Section 4. Semiconductors

The experimental estimation of the illumination generation rate in a nano-SOI film

C. RAVARIU, G. ALECU, F. RAVARIU
University “Politehnica”, Splaiul Independentei, Bucharest, Romania

Some of the most important nowadays SOI technologies, Unibond and SIMOX are in a challenge. The Unibond technique provides thinnest Semiconductor layers (<50 nm) on insulator, while the SIMOX technique has the advantage of a lower cost. The first part of the paper presents these techniques in order to accomplish nano-SOI films. In a second part of the paper, a standard SIMOX wafer, with 200 nm Si-film on 400nm buried oxide on 200 µm Si-substrate was experimentally studied. From the electrical characteristics were deduced the residual net doping concentration in film, the electrical charge from the buried oxide in dark conditions. Then, an average value of the illumination generation rate, in the photoresistance obtained on nano-SOI wafer, was extracted.

(Received January 18, 2006; accepted March 23, 2006)

Keywords: Silicon Insulator, Unibond technique, Electrical characterization

1. Introduction

Usually the SOI acronym means Silicon On Insulator where the Buried Oxide (BOX) is the Insulator. This concept must be updated to “Semiconductor On Insulator” for nowadays technologies. The “Semiconductor” could be Silicon [1], Germanium [2], SiC [3], Diamond [4].

The buried insulator can be oxide, nitride, sapphire [1], quartz, CaF₂ [5] and has a double role in nanostructures: represents a real support for some few atomic layers deposited onto this dielectric and ensures the electrical isolation between the main device and substrate.

In the following paragraph, both SOI nanostructures SIMOX and Unibond were described, because the electrical experiments will be related to these structures. The SIMOX process provides n-type film on p-type substrate, while the Unibond or WB process provides the same type of conduction in film and substrate.

2. Two SOI competitors toward nanostructures

Some of the most important nowadays SOI technologies, Unibond and SIMOX are challenging. A brief description of SIMOX technology – Separation by Implanted Oxygen - comprises the main steps, represented in the Fig. 1a. A deep ion implantation of oxygen, is followed by a short temperature annealing, usually in multistep process. The commonly implantation dose is 1.8x10¹⁰O/cm², at a 190keV beam energy, [1]. The implantation must be done at a temperature higher than 500 °C, to avoid the amorphization of the substrate. The very high temperature annealing (>1300 °C) allows for the elimination of the defects created during the implantation process and sharp Si/SiO₂ interfaces. A standard process provides: 200 nm silicon on 400 nm buried oxide. The film thicknesses can be adjusted from the energy of implantation.

A schematic description of the Unibond technique, in order to obtain nano-SOI films is shown in Fig. 1b: Gas species (for instance, hydrogen) are first implanted in a substrate A. This step induces the formation of an in-depth weakened layer. Then, the substrate (A) is bonded to a support (B) by wafer bonding technique, [1]. Next, a splitting step, which takes place along the in-depth weakened layer, gives rise to the transfer of a thin layer from the substrate (A) onto the support (B). Finally, a treatment can be performed to remove the rough surface left after splitting. Basic mechanisms involved in splitting of silicon wafers have already extensively been reported. This process allows a large flexibility in layer thickness with very high silicon-thickness homogeneity (better than ±5 nm over 200-mm wafers), [2].

Fig. 1. The schematic SOI process for: (a) SIMOX, (b) Unibond technique.
3. Experiments using pseudo-MOS transistor

The main application of the pseudo-MOS transistor is the electrical characterization of SOI materials with the advantage of a nondestructive technique. After a Separation by Implanted of Oxygen, some ions of Oxygen are captured in the film and acts like donor centers [1]. In this way the film becomes n-type, while the substrate is resting p-type.

![Diagram of biased pseudo-MOS transistor with n-type film and p-type substrate.](image)

![Diagram of top view of SOI sample.](image)

The structure of the pseudo-MOS transistor is presented in Fig. 2. The gate is represented by the bottom of the SOI wafer and the source and drain consists of two wires placed on the top of the film, Fig. 3. The gate will be negative biased, in order to deplete and eventually to invert the film bottom. In Fig. 4.a are presented the experimental characteristics I_D-V_G for $V_{DS}=0.3$ V. The gate voltage was increased up to $+20$ V in strong accumulation and up to -20 V in strong inversion. The measurements were achieved with a picoamperemeter Keithley 236 and handled with Origin 3. The threshold voltage V_T and the flat-band voltage V_{FB}, were extracted from the $I_D/\sqrt{2G} - V_G$ curves as is described in [1]. The transconductance $g_m=dI_d/dV_G$ was computed with Origin 3 and finaly curves are available in Fig. 4b.

![Graph of I_D vs Gate voltage.](image)

For fully-depleted pseudo-MOS transistor, the analytical models for the threshold and flat-band voltages was extracted, [3]:

$$V_T = -2\phi_F \left(1 + \frac{\varepsilon_S}{\varepsilon_{OX}} \frac{x_{Si}}{x_{Si,OX}} \right) \frac{qN_D}{\varepsilon_{OX}} x_{Si,OX} - 2\phi_F$$ (1)

$$V_{FB} = -\frac{Q_{ox}}{2C_{ox}} x_{OX} - \frac{Q_{ox}^2}{2e\varepsilon_{Si}N_A} + \frac{kT}{q} \ln \frac{N_A N_D}{n_i^2} + \phi_{MS}$$ (2)

where N_D - doping concentration in n-type film; N_A - doping in p-type substrate, $x_{Si,OX}$ - film, respectively substrate thickness; x_{Si} - film thickness; x_{ox} - Buried Insulator thickness; ε_{Si} - dielectric permittivity of Silicon, ε_{ox} - dielectric permittivity of buried insulator; $C_{Si} = e_S/x_{Si}$; $C_{ox} = e_{ox}/x_{ox}$ - specific capacitance of the film, respectively buried insulator; V_G - the gate voltage; $\phi_{F1,2}$ - Fermi potential in film, respectively in substrate, ϕ_{MS} is the metal-semiconductor work-function.

The measured threshold and flat-band voltages, V_T, V_{FB}, were extracted from I_D-V_{GS} curves of a pseudo-MOS transistor by Ghibaudo method, [1]. The cross-point of the linear extrapolation of $I_D/\sqrt{v_{m}} - V_{GS}$ in strong
inversion/accumulation with the horizontal axis gives \(V_{DS} = 2.3 \text{ V} \), \(|V_{FBM}| = 3.4 \text{ V} \), respectively. The SOI wafer had 200 nm Si-film with 400 nm buried oxide and 200 \(\mu \text{m} \) p-substrate, manufactured in SIMOX process. The work function \(\phi_{\text{MS}} = -0.6 \text{ V} \) is known for the Al-Si-n contact. Accordingly with these sizes and the previously extracted parameters, the residual net doping concentration in film \(N_D = 5 \times 10^{13} \text{ cm}^{-3} \) and the global electric charge in the buried oxide, \(Q_{\text{ox}} = 4 \times 10^{12} \text{ e/cm}^2 \) resulted from the analytical models (1) and (2). These values are in agreement with the specific SIMOX technology, [1]. All these values were extracted in dark conditions.

4. The illumination generation rate estimation

For the illumination generation rate determination, usually noted by \(G_t \) in semiconductor physics, was possible using measurements \(I_D-V_{GS} \) in enlightened conditions, with a 60 W bulb. Starting from the Ohm’s law for low \(V_{DS} \) voltage, can be written:

\[
I_D = \frac{V_{DS}}{R_{DS}(V_{GS})} = V_{DS} \cdot f_g \cdot \sigma
\]

(3)

where the channel resistance \(R_{DS} \) and consequently the conductivity depends on the gate voltage. In dark conditions, the dependence of the drain current against the drain voltage can be written in a point of graph as:

\[
I_{D\text{dark}} = qf_g V_{DS} \cdot (p_0 \mu_p + n_0 \mu_n)
\]

(4)

The \(p_0 \) and \(n_0 \) are notations for holes and electrons concentrations in dark conditions. Considering the surface mobility for electrons and holes equal with 1/3 from the bulk mobility at a given net doping concentration, results \(\mu_p = 450 \text{ cm}^2/\text{Vs} \) and \(\mu_n = 220 \text{ cm}^2/\text{Vs} \). The geometrical factor \(f_g \) is the same in dark or light conditions, due to the same shape of contacts. In enlightened conditions, the electrons and holes are additionally generated by the light interaction with the film lattice, increasing the drain current:

\[
I_{D\text{light}} = qf_g V_{DS} \cdot [(p_0 + G_t \tau_p) \mu_p + (n_0 + G_t \tau_n) \mu_n]
\]

(5)

where the electric charge in excess is \(G_t \cdot \tau_p \). From the equations (4) and (5) result the illumination generation rate:

\[
G_t = \frac{I_{D\text{light}} - I_{D\text{dark}} \cdot p_0 \mu_p + n_0 \mu_n}{I_{D\text{dark}} \cdot \tau_p \mu_p + \tau_n \mu_n}
\]

(6)

By applying the relation (6) in three points \(I_D-V_{GS} \) from table 1: \(V_{GS} = -4 \text{ V} \), \(V_{GS} = -7 \text{ V} \), \(V_{GS} = -10 \text{ V} \), respectively results for \(G_t \) the values from table 1. The pseudo-MOS transistor was operated in strong inversion in order to assume \(n_0 \) negligible and considering the lifetime of carrier from the inversion channel \(\tau_c = 10^{-7} \text{ s} \). By averaging, results \(G_t \approx 10^{17} \text{ cm}^{-2} \cdot \text{s}^{-1} \). This value is obviously higher/lower than that from Si bulk where \(G_t \approx 10^{12} \text{ cm}^{-2} \cdot \text{s}^{-1} \), because here we worked with minority carriers.

5. Special results in 1nm SOI transistor from Atlas simulations

The device architecture preserved just 2 “undulations” of Silicon onto an oxide support; thinning the Si-channel region, the carrier transport was confined. The source and drain regions are \(n^+ \)-type Si \((N_D=10^{17} \text{ cm}^{-3}) \) with \(y_{\text{ns}} = 7 \text{ nm} \), placed at \(x_{\text{ns}} = 3 \text{ nm} \) distance. A thinner \(p^+\)-type Si layer \((N_D=5 \times 10^{16} \text{ cm}^{-3}) \) links the source and drain regions. The film thickness was varied: \(y_{\text{film}} = 200 \text{ nm} \), \(10 \text{ nm} \), \(1 \text{ nm} \). In Fig. 2 a family of transfer characteristics \(I_D-V_{GS} \) was presented. These curves with a maximum prove the Coulomb blockade initiations for \(y_{\text{film}} \leq 1 \text{ nm} \).

Table 1. The measured drain current against the gate voltage at \(V_{GS}=+0.3 \text{V} \).

<table>
<thead>
<tr>
<th>(V_{GS}) (V)</th>
<th>(I_D\text{dark}) (A)</th>
<th>(I_D\text{light}) (A)</th>
<th>(G_t) (cm(^2)/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4</td>
<td>1.93E-09</td>
<td>9.56E-09</td>
<td>2.2e+19</td>
</tr>
<tr>
<td>-7</td>
<td>5.54E-09</td>
<td>8.23E-09</td>
<td>1.13e+20</td>
</tr>
<tr>
<td>-10</td>
<td>6.29E-09</td>
<td>4.32E-09</td>
<td>2.43e+20</td>
</tr>
</tbody>
</table>

Fig. 2. The simulated \(I_D-V_{GS} \) characteristics of a MOS/SOI transistor with different size.
6. Conclusions

One of the most important SOI technologies is SIMOX – Separation by IMplanted OXygen. A standard SIMOX nanostructured wafer with 200 nm Si-film on 400 nm buried oxide on 200 µm Si-substrate was studied in this paper. From experimental transfer characteristics results: $N_D = 5 \times 10^{15} \, \text{cm}^{-3} > 10^{15} \, \text{cm}^{-3} = N_{\text{substr}}$ – a validation of the assumption that the residual dopage in SIMOX films overcomes the substrate dopage due to oxygen donors, $Q_{\text{ox}} = 4 \times 10^{12} \, \text{e/cm}^{2}$ – in agreement with the data from literature and the illumination generation rate was estimated at $10^{20} \, \text{cm}^{-3} \cdot \text{s}^{-1}$ lower that in Si bulk case as is expected.

Sub 3-nm SOI devices present quantum effects. The Coulomb blockade initiation in the proposed nano-transistor was demonstrated by the simulations: the I_D-V_{GS} curves, where a maximum occurs.

References

Corresponding author: cristir@mcm.pub.ro