FTIR structural investigation of $3\text{B}_2\text{O}_3\cdot\text{BaO}$ glass matrix containing manganese ions

I. ARDELEANa, M. TODERAŞa,b

aFaculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania
bDepartment of Physics, University of Oradea, Oradea, Romania

The glasses of the system $x\text{MnO}·(100-x)[3\text{B}_2\text{O}_3·\text{BaO}]$ system with $0 \leq x \leq 50$ mol% were prepared and characterized by IR spectroscopy. The influence of gradual increase in MnO content on the glass structure were revealed. It was estimated the presence and the dependence of the borate structural units by the MnO content. For our system both BO_3 and BO_4 units was detected, the first being dominant in all concentration range.

(Received December 2, 2005; accepted May 18, 2006)

Keywords: Borate glasses, Structure by FTIR spectroscopy, BaO, MnO

1. **Introduction**

Structural properties of the vitous systems were frequently studied by means of the FT – IR spectroscopy [1].

Glasses are studied nowadays mainly because of the large applications that they span. B_2O_3 is one of the most common glass former and is present in almost all commercially important glasses. It is often used as a dielectric and insulating materials and because of the occurrence of boron anomaly [2]. Barium borate glasses are important because of their use as a non-volatile flux in the crystal growth of garnets and ferrites [3]. The addition of iron oxide to borate glasses makes them electrically semiconducting and superparamagnetic [4].

The borate glasses are very often investigated by a lot of methods because they are relatively easy to obtain and moreover because in their structure appear a large variety of structural units over a wide range of modifier concentration [5, 6].

The structure of borate glasses was studied by X-ray [7,8] and neutron [9,10] diffraction, IR [11], Raman [11-14] and NMR [15-16] spectroscopies. All investigations report that B_2O_3 is composed essentially of BO_3 units forming three-membered (boroxol) rings. The addition of oxides such as BaO results in the change of some BO_3 units in BO_4 units. The introduction of the metal ions such as MnO in glasses produces other changes in glass structure.

In this paper we proposed to study by means of FTIR spectroscopy the structural modification in the $3\text{B}_2\text{O}_3·\text{BaO}$ glass matrix by gradual increasing of MnO content.

2. **Experimental**

Glasses from the $x\text{MnO}·(100-x)[3\text{B}_2\text{O}_3·\text{BaO}]$ system were prepared using reagent grade purity MnCO_3, H_3BO_3, and BaCO_3 in suitable proportions. The mechanically homogenized mixtures were directly introduced and melted in sintered corundum crucibles at 1250 °C for 30 minutes, in an electrical furnace. The melts were poured onto stainless steel plates.

The X-ray patterns of the investigated samples are characteristic for the vitreous systems. No crystalline phases were observed up to 50 mol% MnO.

The FT-IR absorption spectra of the glasses in the 400 – 2000 cm$^{-1}$ spectral range were obtained with an Equinox 55 Bruker spectrometer. The measurements were done using the KBr pellet technique. The samples were crushed in an agate mortar to obtain particles of micrometer size. This procedure was applied every time to fragments of bulk glass to avoid structural modifications due to ambient moisture.

3. **Results and discussion**

The experimental IR spectra of the $x\text{MnO}·(100-x)[3\text{B}_2\text{O}_3·\text{BaO}]$ glass system, with $0 \leq x \leq 50$ mol%, are presented in Fig. 1. The obtained absorption bands and their assignments are summarized in Table 1.

Fig. 1. Infrared absorption spectra of $x\text{MnO}·(100-x)[3\text{B}_2\text{O}_3·\text{BaO}]$ glasses.
Table 1. Frequencies and their assignments for IR spectra of xMnO·(100-x)[3B2O3·BaO] glasses.

<table>
<thead>
<tr>
<th>Wavenumber (cm⁻¹)</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 474</td>
<td>Specific vibrations of Ba-O bonds</td>
</tr>
<tr>
<td>~ 624</td>
<td>Specific vibrations of Mn-O bonds</td>
</tr>
<tr>
<td>~ 709</td>
<td>O₂B-O₂B bending vibrations</td>
</tr>
<tr>
<td>~ 770</td>
<td>O₂B-O-B bending vibrations</td>
</tr>
<tr>
<td>~ 930</td>
<td>B-O stretching vibrations of BO₄ units in trigonal borate groups</td>
</tr>
<tr>
<td>~ 1015</td>
<td>B-O stretching vibrations of BO₃ units in tri-, tetra- and penta-borate groups</td>
</tr>
<tr>
<td>~ 1054</td>
<td>B-O stretching vibrations of trigonal BO₃ units in boroxol rings</td>
</tr>
<tr>
<td>~ 1200</td>
<td>B-O stretching vibrations of BO₅ units in meta-, pyro- and orthoborate groups</td>
</tr>
<tr>
<td>~ 1390</td>
<td>B-O stretching vibrations of BO₅ units in meta-, pyro- and orthoborate groups</td>
</tr>
</tbody>
</table>

For the interpretation of the results we used the Tarté [17, 18] and Condarte [19, 20] methods. The experimental data are compared with those obtained for crystalline samples. In our studied we used the absorption bands of the crystalline manganese oxides MnO₂ and Mn₃O₄ and BaO. In the matrix spectrum, the following bands are evidenced: ~ 474 cm⁻¹, ~ 710 cm⁻¹, ~ 770 cm⁻¹, ~ 930 cm⁻¹, ~ 1015 cm⁻¹, ~ 1200 cm⁻¹ and ~ 1390 cm⁻¹.

The band at ~ 1390 cm⁻¹ was assigned to B-O stretching vibrations of trigonal (BO₃) units in boroxol rings. The intensity of this band decreases with the increasing of MnO content. The absorption band at ~ 1200 cm⁻¹ was assigned to B–O stretching vibrations of trigonal (BO₃) units in boroxol rings. The intensity of this band increases with the increase of MnO content up to 5 mol%. For higher concentrations of MnO, the bands broaden with the increase of MnO content.

The weak bands evidenced at ~ 1054 cm⁻¹, at ~ 1015 cm⁻¹ and at ~ 930 cm⁻¹ was assigned to stretching vibrations of B-O bonds of BO₄ units from tri-, tetra- and penta-borate groups. The band at ~ 1054 cm⁻¹ gradually disappears with the increase of MnO content by merging into band centred at ~ 1015 cm⁻¹. These bands are weak for the glasses containing high content of MnO.

In all the IR spectra a band at ~ 710 cm⁻¹ relative to the band at ~ 720 cm⁻¹ from the spectrum of vitreous B₂O₃, which is due to the bending vibration of B-O-B linkage in borate network [22, 26-28]. The intensity of this band increases with the increase of MnO content up to 1 mol%. For higher concentrations, the amplitude of this band decreases.

The band at ~ 624 cm⁻¹ is due to specific vibrations of Mn-O bonds and the band at ~ 474 cm⁻¹ to specific vibration of Ba-O bonds. It can be noticed that the intensity of the band at ~ 624 cm⁻¹ increases with the increase of MnO content up to 5 mol% and for higher concentrations of MnO almost disappears, while the intensity of the band at ~ 474 cm⁻¹ is approximately the same for all compositional range.

It is remarkable that the presence of high content of 3B₂O₃·BaO glass matrix determine strong structural modification of glass network, behaviour which is specific only for manganese ions.

In case of studied glasses the intensity of absorption bands became large and the bands broaden with the increase of the MnO content. It means that the structure of the studied glasses became disordered. Probably, due to this fact for these concentrations it was not evidenced clearly the absorption in IR of MnO and BaO specific vibrations.

4. Conclusions
Homogeneous glasses of the xMnO·(100-x)[3B₂O₃·BaO] system were obtained within 0 ≤ x ≤ 50 mol%. IR spectra of these glasses have been analyzed in order to identify the spectral contribution of each component on the structure and to point out the role of the manganese ions as a modifier of the glass network. The shape of the spectrum revealed a significant disorder in our glasses for higher content of MnO.

In the investigated glass system the three-fold boron atoms are dominated compared with the fourfold ones.

References

*Corresponding authors: atoderas@uoradea.ro