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We present a method for the numerical calculation of the split-step quasi-discrete Hankel transform (SSQDHT) that has a 

high computational efficiency and an accuracy. The (3+1)-D nonlinear self-focusing dynamics can be investigated by 

SSQDHT. The results show that the (3+1)-D self-focusing characterization is simulated successfully for different initial 

noise, chirp and coupled beams.  
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1. Introduction 

 

Self-focusing dynamics of optical beams has attracted 

much more interest. In particular, the spatiotemporal 

self-focusing of ultrashort optical pulses has been the 

subject of intense investigations. The remarkable richness 

of spatial and temporal nonlinear phenomena are observed, 

such as self-steepening, pulse splitting, multiphoton 

ionization, multiple filamentation, the universal 

self-similar spatial collapse profile known as the Townes 

profile, and supercontinuum generation [1-7]. The 

evolution of self-focusing dynamics could be described by 

(3+1)-D nonlinear Schrödinger equation (NLSE). It is 

necessary to solve the NLSE to understand various 

dynamics occurring during the self-focusing beam 

transmission. However, except in some special cases, it is 

not possible to solve the NLSE analytically when the 

nonlinear, diffraction and dispersion effect are considered. 

A large number of methods can be used for this purpose, 

such as the split-step Fourier transform (SSFT) and 

Crank-Nicholson scheme [8-15]. However, most of the 

approach known takes long time and does not have enough 

accuracy because the spatiotemporal self-focusing 

problems are considered in a lot of computations and CPU 

time is required. In this paper, we demonstrate the 

split-step quasi-discrete Hankel transform (SSQDHT) for 

speeding up the computations and high precision for its 

simple matrix-vector multiplication. 

Based on Dini series expansion, the quasi-discrete 

Hankel transform (QDHT) algorithm can not only directly 

fast simulate the values on symmetry axis, but also keep 

very high precision after numerous transformations 

[16-19]. The results show our method runs fast and has 

high accuracy. Thus, the QDHT is really appropriate to 

study the spatiotemporal self-focusing dynamics.   

In this paper, firstly we propose an approach called 

SSQDHT which is fast and has high precision. Then the 

(3+1)-D self-focusing dynamics is theoretically analyzed 

for different initial noise, different initial chirp and 

different initial separation of the coupled beam. The final 

section is the conclusion. 

 

2. Quasi-discrete Hankel transform (QDHT)  

  algorithm 

 

In propagation of optical beams through systems with 

a spatiotemporal symmetry, the half order Hankel 

transform pairs are [16-19]  
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where 
2 2 2 2r x y t   is the spatiotemporal coordinate; 

  is the spatiotemporal frequency; 1

2

J  is the half-order 

Bessel function of the first kind; f(r) and g(  ) can be 

either real or complex functions and are of axial symmetry 

mathematically, representing the field distributions in a 

spatial domain and spatial frequency domain, respectively. 

Based on the half order Bessel series, we evaluate 

the / 2nr a   and / 2ma b  , then the f(r) and 
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g(  ) of the equation(1) can be expanded 
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where na  (n = 1, 2, 3 . . . ) are the roots of the half-order 

Bessel function ,  2 bS  . 

Eq. (2) can be rewritten in a symmetric form by 

defining the vectors 
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Therefore Eq. (3) can becomes 
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where nmC  is the elements of an (N+1)-dimensional 

transformation matrix C and given by 
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When the sample number is N=500, the error is 

about
1510

as Fig. 1 (a) shown. And the running time 

is 2 2

c T=  1.5625000E 10 +N 1.0742188 10    , where Nc is the 

cycle number. We can see from Fig. 1 (b) that the values of 

energy remain the same after 2000 transforming by QDHT, 

which indicates the program executes successfully. 

The results illustrate the QDHT performs well, which 
not only has higher accuracy, but also is fast enough. 
Therefore, we can solve the (3+1)-D self-focusing 
dynamics based on QDHT.

 
(a) 

 

(b) 

Fig. 1. (a) The error versus radius for twice transformation; (b) the power with transform number by QDHT 
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3. (3+1) D Nonlinear self-focusing dynamics  

   by SSQDHT 

 

The time-dependent normalization paraxial wave 

equation in the presence of group-velocity dispersion 

(GVD) is 

 

2
22

2

2 2

2 2
( ) 0

2
d

A A
i s A A

t

A A

x y




 
   

 

 


 
    (6) 

 

where A is the slowly varying envelope, and Z is the 

direction of propagation; 2 is the dispersion coefficient 

and  is nonlinear parameter; sgn(1)ds   and 

sgn( 1)ds   corresponding to normal dispersion and 

anomalous dispersion. 

For anomalous dispersion, the Eq. (1) can be written 

in the form 
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where

2 2 2

2 2 2x y t


  
   

    represents the transverse 

Laplacian, and vector ( , , )r x y t  has space components 

x and y and time component t.  

And the Eq. (7) can be written as 
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where D


 is an operator that accounts for diffraction and 

dispersion in linear media and N


 is nonlinear operator 

that stands for the effect of the Kerr nonlinearities. These 

operators are given by 
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Then the SSQDHT is as follows. 
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The following is the simulations by SSQDHT, and the 

input Gaussians beams is 2 2/2 /2

0(0, ) ( )
4

r rPA r A e e


    with 

50*11.7P  . 

 

 

(a)                                  (b)                               (c) 

  Fig. 2. (a) Power versus distance, (b) Axial intensity versus distance, (c) the profile of self-focusing beam by SSQDHT 
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Fig. 2 (a-c) indicates the self-focusing evolution of the 

beam. Fig. 2 (a) exhibits that the power remains 

unchanged during propagation. The beam collapses is 

about in 0.08 as Fig. 2 (b) shown. Fig. 2 (c) is the profile 

of the beam at self-focusing distance. From Fig. 2 (a-c) we 

can know the (3+1) D self-focusing dynamics can be well 

simulated by the SSQDHT algorithm. Therefore, the 

SSQDHT is appropriate to solve the problem of wave 

dynamics. 

 

   (a) 

 

(b)        

 

(c) 

Fig. 3. Axial intensity versus propagation distance for (a) 

different initial noise, (b) chirp, and (c) separationL by 

SSQDHT 

The (3+1) D collapse of the beam is highly sensitive 

because the self-focusing is characterized by a delicate 

balance between the diffraction, dispersion and Kerr 

nonlinearity. We apply SSQDHT model to demonstrate 

self-focusing dynamics for different initial noise, chirp and 

coupled beam separation as follows. 

The beam always contains some noise because of 

various influences of quantum noise and fluctuations of 

various technical origins. It is necessary to study how the 

noise affects the beams self-focusing dynamics. Fig. 3 (a) 

illustrates the influence of initial noise. The beam 

collapses in a smaller distance and the on-axis intensity 

decreases for 10% random noise while they alter little for 

1% random noise. 

The spatiotemporal chirp is helpful for the 

suppression of longitudinal mode competition in the laser 

design. Fig. 3 (b) shows the self-focusing level varies with 

initial chirp and C is the spatiotemporal chirp. The 

collapse becomes faster and the on-axis intensity increases 

when the absolute value of the negative chirp increases. 

On the other hand, the beam collapses later for the positive 

chirp increasing. The accuracy of beam shaping relates to 

the degree of spatiotemporal chirp at the focal plane. 

Fig. 3 (c) reveals the axial intensity of two coupled 

Gaussian beams changes with self-focusing distance for 

different initial L, and L is the initial spatiotemporal 

separation. The collapse varies with different L. The 

self-focusing distance enhances while the on-axis intensity 

reduces with the L increasing. 

 

 

4. Conclusion 

 

To sum up, we present a significant technique to 

numerically solve (3+1) D self-focusing problems. The 

SSQDHT model is simplicity, flexibility, good accuracy, 

and relatively low computing cost. We also demonstrate 

how to apply the SSQDHT to study the (3+1) D 

self-focusing dynamics for different initial noise, chirp and 

separation of the coupled beams. 

With the help of SSQDHT, it is possible to accurately 

track a beam much closer to its (3+1) D physical collapse 

due to self-focusing than other existing methods. It is a 

significant method to simulate the light bullets which is 

very important for telecommunication system due to their 

self confined structure.  
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