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Motivated by the endurance of special attack on asymmetric cryptosystems by modified equal modulus decomposition, a 
new watermarking scheme for grayscale images in fractional Hartley domain is proposed in this paper.  The input grayscale 
images, bonded with random phase mask, are transformed according to fractional Hartley transform, followed by equal 
modulus decomposition. One of the two images obtained by equal modulus decomposition serves as a private key, 
whereas the other image is further transformed with another fractional Hartley transform followed by equal modulus 
decomposition. Again, one of the resulting images acts as a second private key, whereas the other image is phase 
truncated before combining with the host image, resulting in a watermarked image.  Simulation of the watermarking scheme 
shows that the scheme is very sensitive to private keys, fractional Hartley orders, and attenuation factor used in the 
watermarking process. Analysis of histograms, autocorrelation plot, and entropy also indicate that the scheme resists 
statistical attacks. The scheme also shows its robustness against the additive Gaussian noise attack.  
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1. Introduction 
 

In the modern times, security of data is the uppermost 

need of society because of increased use of public 

networks (secure/unsecure channels) for data transmission. 

Data may be one-time password for someone’s banking 

transaction, accounts details, salary details, shopping 

details, social media details, images, and many more. To 

restrict an intruder from gaining access to unauthorized 

data, encryption is one of the widely used approaches. 

With rapidly decreasing cost of computation, digital image 

encryption algorithms are prone to the attacks as they 

possess low degrees of freedom. On the other hand, optical 

cryptosystems have higher degrees of freedom in terms of 

wavelength, phase, orbital angular momentum, and 

polarization, to encode data securely [1–3]. They can 

process data in parallel, ensuring higher throughput rate as 

compared to their digital counterparts. These advantages 

led to development of many encryption schemes modelled 

on the double random phase encoding (DRPE) proposed 

by Refregier and Javidi [4], in various domains such as 

Fourier [5], fractional Fourier [6, 7], Hartley [8], fractional 

Hartley [9], gyrator [10], Mellin, fractional Mellin [11], 

and wavelet [12] etc.   

Image watermarking is an effective way to employ 

copyright protection and guarantee the security of data 

transmitted over a network.  An effective watermarking 

scheme should exhibit adjustability, robustness, 

imperceptibility, security, and computational complexity 

[13]. It may be classified in many ways. In view of 

imperceptibility of watermark, the schemes can be 

classified as invisible and visible watermarking. Normally 

invisible watermarking schemes are used for copyright 

protection. Data being hidden can be encrypted for further 

strengthening the watermarking scheme. Owing to 

additional features for security, optical encryption based 

watermarking schemes have been employed in the recent 

past. Watermarking schemes may be categorized as 

symmetric and asymmetric. Symmetric schemes are 

characterized by the use of same keys for watermarks 

embedding and detection as in the case of DRPE whereas 

in asymmetric watermarking, watermarks embedding and 

detection keys are different.   

Qin and Peng [14] introduced an asymmetric optical 

cryptosystem based on phase-truncated Fourier transform 

(PTFT). But later on, PTFT based schemes were found to 

be vulnerable to a special attack [15, 16]. In 2015, Cai et 

al. [17] introduced asymmetric optical cryptosystem based 

on equal modulus decomposition (EMD).  Deng [18], and 

Wu et al. [19] have shown that single EMD is also 

vulnerable to special attack as its ciphertext provides 

enough information to an attacker. However, Chen et al. 

[20] proposed pixel scrambling operator along with EMD 

in gyrator domain to resist special attack. Another scheme 

employing phase truncation operation and EMD in 

fractional Fourier domain is proposed by Barfungpa and 

Abuturab [21]. Fatima et al. [22] countered vulnerability 

of the special attack on EMD by using multiple diffraction 

imaging in the gyrator domain. In 2017, Cai and Shen [23] 

proposed modified equal modulus decomposition scheme 
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where EMD is implemented twice in Fourier domain, to 

resist the special attack. Recently, Fatima and Nishchal 

[24] discussed vulnerability of EMD to the specific attack 

and its variants that overcome the vulnerability to the 

attack. Recently, Rahekja et al. [25–27] used  modified 

equal modulus decomposition scheme in hybrid domain. 

Attempts to explore the application of fractional 

Hartley transform (FrHT) in the area of image encryption 

has been made in recent years.  Zhao et al. [28] proposed 

redefined fractional Hartley transform for image 

encryption as FrHT does not satisfy the additive property. 

They also proposed its optical implementation. Li and 

Zhao [9] extended their work for color images. Thereafter, 

FrHT based schemes are proposed with, pixel scrambling 

operation [29,30], for double images [31], vector operation 

[32], phase images [33], and structured phase masks [34]. 

Recently, Singh et al. [35], and Yadav and Singh [36] 

proposed PTFT based asymmetric cryptosystem in FrHT 

domain. 

This study proposes a novel watermarking scheme 

that uses modified equal modulus decomposition (MEMD) 

principle in the fractional Hartley domain. Further, it is 

claimed that there is no such watermarking scheme 

proposed in the literature till date. Modified equal modulus 

decomposition is used to resist the special attack. The rest 

of the paper is organized as follows: Section 2 gives basic 

definitions of fractional Hartley transform, and modified 

equal modulus decomposition. The proposed 

watermarking scheme and its validation on MATLAB are 

presented in Section 3.  Results and discussion are 

reported in Section 4. Finally, Section 5 gives the main 

conclusions of the study. 

 
 
2. The principle  
 

Fractional Hartley transform, and modified equal 

modulus decomposition are the basic tools used in the 

proposed watermarking scheme which are briefly given as 

follows:  

 

2.1. Fractional Hartley transform 

 

Hartley transform is a real valued transform whereas 

fractional Hartley transform (𝐹𝑟𝐻𝑇) is complex valued. 

The two dimensional 𝐹𝑟𝐻𝑇  of a plaintext 𝑓(𝑥, 𝑦) is 

defined [28] as, 

  

 

𝐻𝑟,𝑠(𝑢, 𝑣) =
√(1 − 𝑖𝑐𝑜𝑡𝜙1)(1 − 𝑖𝑐𝑜𝑡𝜙2)

2𝜋
 

exp [𝑖𝜋 (
𝑢2𝑐𝑜𝑡𝜙1

𝜆𝑓𝑠1

+
𝑣2𝑐𝑜𝑡𝜙2

𝜆𝑓𝑠2

)] 

                   × ∫ ∫

𝑒𝑥𝑝 (
𝑖𝜋𝑥2𝑐𝑜𝑡𝜙1

𝜆𝑓𝑠1

+
𝑖𝜋𝑦2𝑐𝑜𝑡𝜙2

𝜆𝑓𝑠2

)

{
1 − 𝑖 exp [𝑖(𝜙1 + 𝜙2)/2]

2

∞

−∞

∞

−∞

 

                   × 𝑐𝑎𝑠 (
𝑢𝑥 𝑐𝑠𝑐 𝜙1

𝜆𝑓𝑠1

+
𝑣𝑦 𝑐𝑠𝑐 𝜙2

𝜆𝑓𝑠2

) +
1 + 𝑖 exp [𝑖(𝜙1 + 𝜙2)/2]

2
 

             × 𝑐𝑎𝑠 (−
𝑢𝑥 csc 𝜙1

𝜆𝑓𝑠1

−
𝑣𝑦 csc 𝜙2

𝜆𝑓𝑠2

)} 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦                                           (1)  

 

where 𝑟 and  𝑠  are the fractional orders of 𝐹𝑟𝐻𝑇 , 𝜙1 =
𝑟𝜋/2  and 𝜙2 = 𝑠𝜋/2 , 𝑐𝑎𝑠 = 𝑐𝑜𝑠 + 𝑠𝑖𝑛.  In optical 

implementation of FrHT, 𝑓𝑠1 and 𝑓𝑠2 are the focal lengths 

of lenses in the 𝑥 and 𝑦 directions respectively, and 𝜆  is 

the wavelength of the input light. Zhao et al. [28] 

redefined 𝐹𝑟𝐻𝑇  in terms of fractional Fourier transform 

(FrFT), which is as follows: 

 

𝐻𝑟,𝑠(𝑢, 𝑣) =
1 + exp [

𝑖(𝜙1 + 𝜙2)
2

]

2
𝐹𝑟𝐹𝑇𝑟,𝑠(𝑢, 𝑣) 

+
1 −  exp [𝑖(𝜙1 + 𝜙2)/2]

2
𝐹𝑟𝐹𝑇𝑟,𝑠(−𝑢, −𝑣)                                                             (2) 
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Period of fractional Hartley transform is 2. In optical 

implementation (eq. (2)), 𝐹𝑟𝐻𝑇 is realized in four-channel 

way. Two channels represent 𝐹𝑟𝐹𝑇𝑟,𝑠(𝑢, 𝑣)  and 

exp [𝑖(𝜙1 + 𝜙2)/2]𝐹𝑟𝐹𝑇𝑟,𝑠(𝑢, 𝑣)  expressions, and the 

other two channels represent 𝐹𝑟𝐹𝑇𝑟,𝑠(−𝑢, −𝑣)  and 

exp [𝑖(𝜙1 + 𝜙2)/2]𝐹𝑟𝐹𝑇𝑟,𝑠(−𝑢, − 𝑣) . Optical 

implementation of 𝐹𝑟𝐹𝑇𝑟,𝑠(𝑢, 𝑣)  is well-known [37,38], 

whereas 𝐹𝑟𝐹𝑇𝑟,𝑠(−𝑢, −𝑣)  is obtained using cube corner 

prism by rotating the field of 𝐹𝑟𝐹𝑇𝑟,𝑠(𝑢, 𝑣) through 𝜋.  
 

2.2. Modified equal modulus decomposition  

 

Cai et al. [17] proposed an asymmetric image 

encryption referred to as equal modulus decomposition.  A 

plaintext 𝑓(𝑥, 𝑦) is first bonded with a random phase mask 

(𝑅𝑃𝑀) and then Fourier transformed (Fig. 1).  

 

f(x,y) X

RPM

FT EMD

P2

P1

 q 

 
 

Fig. 1.  Flowchart of the encryption scheme of equal 

modulus decomposition (Cai et al. [17]) 

 

The resulting image 𝐹(𝑢, 𝑣)(=

𝐴(𝑢, 𝑣) exp(𝑖𝜑(𝑢, 𝑣)),  with the help of random 

distribution function 𝜃(𝑢, 𝑣)  uniformly distributed in the 

interval [0, 2𝜋], is decomposed into two masks 𝑃1 and 𝑃2 

given by: 

 

𝑃1 =
𝐴(𝑢, 𝑣)/2

cos (𝜑(𝑢, 𝑣) − 𝜃(𝑢, 𝑣))
𝑒𝑖𝜃(𝑢,𝑣) 

 

𝑃2 =
𝐴(𝑢, 𝑣)/2

cos (𝜑(𝑢, 𝑣) − 𝜃(𝑢, 𝑣))
𝑒𝑖(2𝜑(𝑢,𝑣)−𝜃(𝑢,𝑣)) 

 

𝑃1 is taken as ciphertext and 𝑃2 acts as a private key. 

The principle behind EMD is well-explained by Cai et al. 

[17]. From Fig. 2,  𝑃1 + 𝑃2 = 𝐴(𝑢, 𝑣) exp(𝑖𝜑(𝑢, 𝑣)), and 

therefore, the decryption process can be explained as  

𝑓(𝑥, 𝑦) = |𝐹𝑇−1(𝑃1 + 𝑃2)| , where 𝐹𝑇−1  is the inverse 

Fourier transform. The optical set-up of decryption process 

is given in Fig.3. It consists of two spatial light modulators 

(SLMs) to display the 𝑃1 and 𝑃2, one beam splitter, lens 

and charge-coupled device (CCD). The two 

monochromatic coherent light beams, which are placed in 

the Fourier plane interfere with each other and the 

plaintext is recorded by intensity detector. 

 

u

v

P1

P2

 q 

j 

A( u,v)eij  

 
 

Fig. 2. Principle of equal modulus decomposition 
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 Splitter

P1

P2

Lens

CCD

 
Fig. 3. Optical setup of the decryption process of the 

equal modulus decomposition 

 

Deng [18], and Wu et al. [19] have shown that single 

EMD is vulnerable to special attack as its ciphertext 

reveals information such as amplitude which is the same 

for private key. Recently, Cai and Shen [23] modified the 

EMD by cascading the asymmetric unit twice (Fig.4). In 

this asymmetric cryptosystem, RPM, 𝜃1 , and 𝜃2  act as 

public keys whereas 𝑃1 and 𝑄2  are the private keys. PT 

and PR are respectively the phase truncation and phase 

reserve operations. It is worth noting that they have 

taken 𝑃1 as a private key in the first unit in place of  𝑃2 as 

in EMD.  They have shown that the scheme also resists the 

special attack. 

 

PT

PR

f(x,y) X
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FT EMD

P1

P2

 q1 

EMD

Q2

Q1

 q2 

E(x,y)

K

FT
-1

 

 
Fig. 4. Flowchart of the encryption scheme of modified 

equal modulus decomposition 

 
3. The scheme and its validation  

 

A schematic diagram of the proposed watermarking 

scheme is presented in Fig. 5. In the encryption process 

(Fig.5a), an input grayscale image is first bonded with a 

random phase mask and then FrHT of order (𝑟, 𝑠)  is 

implemented on it. By using a random distribution 

function 𝜃1(𝑢, 𝑣)  which is uniformly distributed in the 

interval [0, 2𝜋],  first EMD decomposes the resulting 
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image in two masks 𝑃1 and 𝑃2 as explained in previous 

subsection.  𝑃2   undergoes another 𝐹𝑟𝐻𝑇  of order (𝑡, 𝑢) 

and then EMD with the help of another random 

distribution function 𝜃2(𝑥, 𝑦) .  𝑄1  and 𝑄2 denote the 

resulting masks from the second EMD. 𝑄2 serves as the 

private key and 𝑄1 undergoes phase reservation and phase 

truncation operations. The phase truncated part 𝐸(𝑥, 𝑦) of 

𝑄1   is embedded in a host image ℎ(𝑥, 𝑦)  with an 

attenuation factor 𝛽, resulting in a watermarked image 

𝐻(𝑥, 𝑦) in the spatial domain. 

 

𝐻(𝑥, 𝑦) = ℎ(𝑥, 𝑦) + 𝛽 𝐸(𝑥, 𝑦) 

In the decryption process (Fig. 5 b), the host image 

ℎ(𝑥, 𝑦)  is extracted from the watermarked image 𝐻(𝑥, 𝑦) 

and the obtained image is divided by the attenuation factor 

𝛽  to get 𝐸(𝑥, 𝑦). A phase function with angle 𝜃2(𝑥, 𝑦) 

which is a public key, is multiplied with 𝐸(𝑥, 𝑦) and the 

private key 𝑄2 added to the resulting image followed by 

inverse 𝐹𝑟𝐻𝑇 with orders (−𝑡, −𝑢), to get 𝑃2. The first 

private key P1 is then added to 𝑃2 and subjected to inverse 

fractional Hartley transform with orders (−𝑟, −𝑠). 
Absolute part of the resulting image is our recovered 

image. 

 

 

PT
f(x,y) X

RPM

FRHT(r,s) EMD

P1

P2

 q1 

EMD

Q2

Q1

 q2 

E(x,y) +

h(x,y)

H(x,y)=h+ βEFRHT(t,u)
β 

 
 

(a) 

 

|f(x,y)| FRHT(-r,-s) P2

Q2

E(x,y) -

h(x,y)

H(x,y)FRHT(-t,-u) XQ1++

 q2  q1 

1/β 

 
 

(b) 

 

Fig. 5. Flowchart of encryption (a) and decryption scheme (b) 

 

 

We performed validation of the proposed scheme on 

MATLAB (R2017b) using grayscale images of size 256 ×
256 pixels. Images of Lena and Cameraman  are used as 

plaintext and host image respectively. For simplicity, 

𝐹𝑟𝐻𝑇  orders are taken as 𝑟 = 𝑠 = 0.3  and  𝑡 = 𝑢 = 0.6, 

and 𝛽 = 0.5  in our simulation. Various steps of the 

watermarking scheme are shown pictorially in Fig. 6. It is 

worth noting that the encrypted image 𝐸(𝑥, 𝑦), shown at 

the last step, is a random white stationary noise, and the 

watermarked and the host images appear identical.  
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Fig. 6.  Encryption scheme with input of image Lena and host image of cameraman 
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The recovered image of Lena is shown in Fig. 7 and 

correlation coefficient 𝐶𝐶  between the recovered image 

and the plaintext is 1. We observe that the decrypted 

image shows a faithful recovery of the input image, thus 

validating the scheme. 

 

 

  
 

Fig. 7. Recovered image from the decryption setup 

 

 
4. Results and discussion  

 

In this section, an analysis of histogram and 

autocorrelation plots, entropy, keys sensitivity, and various 

attacks is performed on the scheme. Results are presented 

in terms of metrics such as mean-squared-error (MSE) and 

correlation coefficient (CC) which are defined as follows: 
 

𝑀𝑆𝐸 =
1

𝑁×𝑁
∑ ∑ |𝐼𝑜(𝑥,   𝑦)  −  𝐼𝑟(𝑥,   𝑦)|2𝑁 

𝑦=1
𝑁
𝑥=1     (3) 

 

 

𝐶𝐶 =
𝑐𝑜𝑣(𝐼𝑜,𝐼𝑟)

𝜎(𝐼𝑜)𝜎(𝐼𝑟) 
                                         (4) 

 

where〖  I〗_o (x,y) and Ir(x, y) denote respectively the 

pixel values of the plaintext and the recovered image of 

size N × N pixels. Here, cov is covariance and σ is the 

standard deviation. 

 

4.1. Statistical attack  

 

Statistical analysis based on histograms and 

autocorrelation peak plot has been performed to test the 

efficacy of the proposed scheme. For a good watermarking 

scheme, histogram of the host image should be same as 

that of the watermarked image.  Fig. 8 a-c show the 

histograms of respectively the input, host image, and 

watermarked images. It is clearly visible that the 

histograms of the host image, and the watermarked image 

are the same. Another criterion used for evaluation of a 

scheme is the autocorrelation peak.  Information hidden in 

the proposed invisible watermarking scheme is the 

encrypted image   𝐸(𝑥, 𝑦). Fig. 8 d gives autocorrelation 

peaks for the encrypted image 𝐸(𝑥, 𝑦). These peaks are 

very weak, and therefore the encryption scheme has strong 

decorrelation power and can resist the statistical attacks 

[21]. 

 

4.2. Entropy analysis 

 

Information entropy serves as an effective statistical 

measure of randomness to characterize the texture of an 

image. Entropy of a grayscale image lies in the range (0-

8). Higher entropy indicates greater randomness in an 

image. Information entropy H(m) of a source m is defined 

as  

 

 
 

Fig. 8 Histograms of (a) input image, (b) host image, (c) watermarked image. (d) Autocorrelation of the encrypted image 𝐸 
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H(m)  =  ∑ P(mk)log2
1

P(mk)

256
k=1                   (5) 

  

 

The scheme consists of the private key 𝑄2 , the 

attenuation factor 𝛽, and the four fractional Hartley orders 

r, s, t, u. Fig. 9 shows the decrypted images corresponding 

to minimal changes in these parameters. Correlation 

coefficients CC  between the plaintext and the recovered 

image are also depicted on each picture. It is observed 

from the figure that with a slight change in any one of the 

parameters of the scheme, the recovered image is 

unrecognizable and corresponding CC values are close to 

zero. If all correct parameters of the scheme are provided, 

we get a faithful recovery (Fig. 9 f). Sensitivity plots of 

attenuation factor β, and FrHT orders r, t are presented in 

Fig. 10. Fig. 10 a shows the CC values on ordinate with 

respect to  β  on the abscissa varying with 10−4.  It is 

observed from the figure that the proposed scheme is very 

sensitive to the attenuation factor. MSE plots of 𝐹𝑟𝐻𝑇 

orders 𝑡 and 𝑟 are shown in Fig. 10 b, c. Results indicate 

that the scheme is also sensitive to 𝐹𝑟𝐻𝑇  orders. 

 

 

 
 

 

Fig. 9 Decrypted images when (a) wrong 𝛽 (𝛽 = 0.5001 in place of correct 𝛽 = 0.5); (b) wrong 𝑃1 ( 𝑃2 is used in place of 𝑃1); (c)  

wrong private key 𝑄2 ( 𝑄1 is used in place of 𝑄2); (d) wrong phase  𝜃2 (𝑟𝑎𝑛𝑑𝑜𝑚 𝑚𝑎𝑡𝑟𝑖𝑥 is used in place of  𝜃2); (e) wrong 𝐹𝑅𝐻𝑇 

order 𝑡 ( 𝑡 = 𝑡 + 0.01 is used); (f) all correct keys 

 

 

 
 

Fig. 10. Sensitivity plots of (a) attenuation factor 𝛽 and (b,c) fractional Hartley orders 𝑡, 𝑟 
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4.4. Attack analysis  

 

A scheme is said to be secure if it can endure basic 

attacks like brute-force attack, noise attack, known-

plaintext attack, and ciphertext-only attack etc. Since the 

proposed watermarking scheme is asymmetric in nature, it 

must resist the special attack also.  Singh et al. [33] have 

shown that a scheme consisting of 𝐹𝑟𝐻𝑇 can endure brute-

force attack for a reasonable time. Also, this scheme 

consist of attenuation factor which is very sensitive 

(Fig.10 a) to its value. Therefore, the proposed 

watermarking scheme endures the brute-force attack. Fig. 

11 shows the results of noise attack on the scheme. It is 

worth noting that the normal random noise 𝑁 with mean 0 

and standard deviation 1 is added to the encrypted image 

𝐸(𝑥, 𝑦) with strength 𝛼 agiven by the equation as follows:    

 

𝐸∗ = 𝐸 + 𝛼 𝑁                                     (6) 
 

 

where 𝐸∗ is noise-effected encrypted image. Fig. 11 (a-d) 

give the recovered images with noise strength 10, 30, 50, 

and 70 respectively. It is clearly evident that the input 

image of Lena is recognizable even in presence of high 

noise (𝛼 = 70). A correlation coefficient 𝐶𝐶 versus noise 

strength 𝛼  plot is given in Fig. 11e. From these results, we 

can easily infer that the proposed watermarking scheme 

endures the noise attack.   
In the present scheme, public keys  {𝑅𝑃𝑀, 𝜃1 and 𝜃2} 

would be same for any input image, whereas private keys 

{ 𝑄2, 𝛽  and 𝐹𝑟𝐻𝑇 orders }  vary with input images. 

Therefore, extracting private keys using a given set of 

plaintext-ciphertext is meaningless for an asymmetric 

scheme and as a result, known-plaintext attack and 

chosen-ciphertext attacks are not applicable on the 

scheme.  Deng [18] showed that with the help of 

ciphertext and public key, single EMD  can be breached 

by the special attack. With a guess of private key whose 

modulus is same as that of the ciphertext, and using 

iterative method, plaintext is successfully recovered. Later 

Wu et al. [19] also performed cryptanalysis on a single 

EMD scheme and shown that it is vulnerable to the special 

attack. Cai and Shen [23]  modified EMD by cascading 

EMD twice and changing the private key for the first 

EMD. They have shown that their scheme endured the 

special attack. Since our scheme uses modified EMD in 

fractional Hartley domain, it also resists the special attack. 

The computation time has been obtained on a personal 

computer with the following configuration: i7-8700 

processor, 8 GB RAM, 3.19 GHz, MATLAB2017b, 

Window 10 etc. We have compared the computation time 

of Singh et al. [33], Cai and Shen [23] with the present 

results in Table 1. 

 
Table 1. Comparison of computation time (sec) of the 

present scheme with the existing literature. 

 

Time for Singh et al. 

[33] (without 

watermarking) 

Cai and Shen 

[23] (without 

watermarking) 

Present 

Scheme 

Encryption  1.38 0.35 0.92 

Decryption  1.13 0.03 0.37 

 

 

 

 

Fig. 11. Decrypted images when encrypted image is attacked with noise strengths 𝛼: 10, 30, 50 and 70 respectively in (a-d). Plot 

of 𝐶𝐶 versus noise strength is presented in (e) 
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5. Conclusions  
 

A new asymmetric invisible watermarking scheme in 

fractional Hartley domain is presented in this paper. 

Modified equal modulus decomposition is used to resist 

the special attack. The scheme is validated for grayscale 

images through experiments performed on MATLAB 

(R2017b). Results show that the scheme is very sensitive 

to the private keys, attenuation factor, and orders of 

fractional Hartley transform. Entropy of the encrypted 

image is 7.9953, very near to its perfect value of 8. 

Histograms and autocorrelation plot establish that the 

scheme resists the statistical attack. The present scheme is 

also tested for its robustness to the noise attack. Results 

shown in terms of the recovered image and correlation 

coefficient plot indicate that the scheme resists a high level 

of noise in the encrypted image. Brute-force attack, 

known-plaintext attack, ciphertext-only attack, and the 

special attack are also discussed in the paper. Endurance to 

all these attacks establishes that the proposed 

watermarking scheme is secure.  
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