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The use of carbon fiber materials is continually increasing in various industrial sectors because of their excellent 
thermomechanical properties. This work presents the implementation of a new approach based on a neural network for the 
processing of pulsed thermography data, to determine the internal defects depths in CFRP material. Preprocessing of 
network training data, using standard thermal contrast and principal component analysis has reduced the number of neural 
network inputs. The elaborated neural network was tested on simulation data with deviations not exceeding 5%. 
Experimental validation confirmed the proposed method’s effectiveness for evaluating the internal defects depths in CFRP 
composites. 
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1. Introduction 
 
The use of carbon fiber materials is continually 

increasing in various industrial sectors. They are more and 

more used because of their excellent thermomechanical 

properties, such as their low densities, their high 

mechanical resistance, good thermal and electrical 

insulation[1]. However, the performance of carbon fiber 

reinforced polymers (CFRP) may be affected by defects, 

such as delamination, cracks, inclusions or 

inhomogeneities of matter[2]. The precise evaluation of 

these defects depth has crucial importance in the 

inspection and maintenance of carbon fiber reinforced 
polymer parts, used particularly in the aeronautical field. 

Therefore, it is important to develop effective inspection 

techniques to control these materials and thus protect 

people and equipment. 

Non-destructive testing (NDT) [3] is an indispensable 

tool in the expensive materials’ quality control. Infrared 

thermography is commonly used as an effective non-

destructive tool in the detection and characterization of 

internal defects[4]. It is a technique that has the ability to 

measure the surface temperature distribution of an object 

remotely. Thus, it allows rapid control of parts and 

structures on site without having to move or remove them. 
In this work, pulsed thermography is used to detect 

defects in CFRP composites. A neural algorithm is used to 

estimate different defects depths in a CFRP sample. A 

principal component analysis [4] is used to reduce the 

neural network input data in the form of standard thermal 

contrast [5]. 

 

 

 
2. Principle of pulsed infrared thermography 

 

 
 

Fig. 1. pulsed infrared thermography principle (color 
online) 

 

Pulsed infrared thermography is one of the most 

widely used techniques in non-destructive thermal control 

[7]. During control, the inspected surface is heated by a 

thermal pulse, lasting few milliseconds for materials with 
high thermal conductivities, and few seconds for low 

thermal conductivities samples. This thermal stimulation 

generates a temperature gradient which propagates by 

conduction inside the inspected sample (Figure 1). The 

sample’s thermal response is recorded with an infrared 

camera to be digitally processed. Thermal data analysis 

allows the evaluation of thermal conductivity and 

diffusivity, or the detection and characterization of defects 

at different depths in the inspected part. 
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3. Thermal modeling of the studied sample  

 

 
 

Fig. 2. 3d image of the studied CFRP sheet 

 

The studied sample ( 

Fig.) is a carbon fiber reinforced polymer sheet 

(CFRP), with the following geometrical dimensions: a 

length of L = 200 mm, a width of W = 105 mm and a 
thickness H = 5 mm. This sheet contains 16 artificial 

defects located at different depths from the heated face, 

materializing air inclusions. 

We have considered circular defects with the 

following diameters 6, 10, 14 and 20mm. Their respective 

thicknesses are 0.25, 0.5, 1.0 and 2.0 mm following a 

horizontal axis parallel to the length of the sheet. We have 

reported in Fig. 3 a sketch of a flawed CFRP sheet. 

 

 
 

Fig. 3. Sketch of a CFRP sheet with inclusions 

 of different sizes at different depths 

 

3.1. Boundary conditions 
 

We applied an external heat flux Q= 5 kW/m2 to heat 

the controlled sample’s upper face for a 10s period. The 

initial temperature is equal to T0 = 293.15 K. The lateral 

faces are supposed to be perfectly isolated. These 

conditions are translated by the equations below: 

 

  ( 1) 

 
Qx=0=Qx=L=0   ( 2) 

 
Qy=0= Qy =w=0   (3) 

 

The conduction heat transfer process in the sample is 

described by the following differential equation: 
 

                       ( 4) 

 
where ρ is the density, Cp is the thermal capacity of the 

material, T is the absolute temperature, k is the material’s 

thermal conductivity and t is the time. 

The boundary conditions in the upper face of the 

controlled sheet are described by equation 5: 

 

    (5) 

 
where Tamb and Tair respectively represent the ambient and 

the air temperatures. ε is the emissivity of the surface, and 

σ is the Stefan-Boltzmann constant. h denotes the 

convective heat transfer coefficient of the material, and n 

the normal direction to the surface. The used thermal 

properties are presented in Table 1. 

 
Table 1. The thermal properties of the used materials [8] 

 
Parameters Symbols Values 

Initial temperature [K] T0 293.15  

Ambient temperature [K] Tamb 293.15  

Air temperature [K] Tair 293.15  

Density of CFRP [kg m-3] ρcfrp 1500  

Heat capacity of CFRP 

[J/(kg.K)] 

cpcfrp 1000  

CFRP Parallel 

conductivity [W/(m.K)] 

k// 7  

CFRP Transverse 

conductivity [W/(m.K)] 

k┴ 0.8 

Air thermal conductivity 

[W/(m.K)] 

ka 0.026 

Air heat capacity 

[J/(kg.K)] 

cpa 1005 

Air density of [kg m-3] ρa 1.225 

heat exchange Coefficient 

[Wm-2k-1] 

h 9.1  

Emissivity ε 0.98 

 

 
 

Fig. 4. Thermogram of the sample surface obtained at         
t= 11s (color online) 

 

The resolution of the differential equations (1-5) by 

the finite element method, using the numerical calculation 

software COMSOL Multiphysics 5.4, allowed us to obtain 

the thermal distribution of the inspected sheet.  
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Fig.  4 shows a thermogram of the upper face at time t 

= 11s. We notice the appearance of internal defects in the 
material. It is noted that defects near the surface and 

defects of large sizes are the most visible in the 

thermograms. 

 

 
 

Fig. 5. Temperature variation as a function of time for  
defects of diameter 6 mm at different depths (color 

online) 

 

We have reported in  

Fig.  the temperature variation as a function of time 

for defects of the same diameter d = 6 mm located at 

different depths e = 0.25, 0.5, 1 and 2 mm. We note that 

the temperature values decrease as the depth of the defect 

increases. 
 

 
 

Fig. 6. Temperature variation as a function of time for 
defects of different diameters located at the same depth e 

= 0.25 mm (color online) 

 

We have reported in figure 6 the temperature variation 

as a function of time for defects at the same depth e = 0.25 

mm, of different diameters d = 6, 10, 14 and 20 mm. It is 

noted that the temperature values decrease as the diameter 
of the defect decreases. In order to increase the degree of 

precision and to realize a more exhaustive study, we 

calculated the standard thermal contrast[6] to eliminate 

thermal noise, produced by healthy areas in the sample to 
be tested. It is defined by the relation (6).  

 

(6) 

 

With Td(t) the surface temperature of the defective 

zone. Ts (t) represents the surface temperature of the 

healthy zone and t0 the start time of the stimulation. 

 

 
 

Fig. 7. Standard thermal contrast variation over time for 
defects located at different depths (color online) 

 
We have reported in Fig. 7 the standard thermal 

contrast variation as a function of time for defects’ depths 

of 6 mm diameter, located at depths e = 0.25 mm, 0.5 mm, 

1 mm and 2 mm. We note that the standard contrast helps 

to better reveal the presence of defects located at different 

depths in composite materials. To model the relation 

between the temperature of the controlled surface and the 

depth of the defects, we will use neural networks that are 

widely recognized to be able to correlate very complex 

problems. 

 

3.2. Neural networks 

 

Artificial neural networks [9] are tools for processing 

information to model complex relationships. They try to 

reproduce the same behaviors of biological neurons. They 

are composed of basic units of data processing called 

formal neurons, interconnected in the form of a network 

with several layers (Fig. 8).  

 

 
 

Fig. 8. Three-layer neural network (color online) 
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The use of artificial neural networks has developed in 

many disciplines and particularly in the field of non-
destructive thermal control[10]. The general work of an 

artificial neural network is to find the configuration of 

connection weights between neurons, to associate a good 

response (outputs) with the inputs. The use of a neural 

network is done in two stages. The learning phase 

(modeling) is responsible for establishing values for each 

of the connections of the network. Then, a phase of use, 

where the network is presented with input, and it tells us in 

return the calculated output (established model). 

 

 
 

Fig. 9. Schemes of the steps of the proposed neuronal method 

 

In this work, we used the neural network to find a 

relationship between the surface temperature and the depth 

of defects in a CFRP sheet. For this purpose, a three-layer 

neural network (Fig. 8), is used to process the 

temperatures obtained by the finite element method, to 

determine the depth of the material’s internal defects. 

Supervised learning was chosen because it is the most 

suitable for approximating relationships (between 

temperatures and corresponding depths). 
Fig. 9 shows the steps followed in the development of 

the neuronal model. The first step is to prepare the 

learning data of the neural network. In our case, the 

obtained temperatures (T1, T2, ... ,TN) are not used as input 

to the network, but it is the standard thermal contrast, 

calculated using the relation (6) over a period of 18 s of 

the cooling part with a sampling step of 0.1s (that is 181 

values). 

To reduce the number of entries, and optimize the 

data provided to the network while keeping the useful 

information for the learning phase, a principal component 

analysis (PCA) is used. This analysis reduced the number 

of thermal contrast vector data (s1,s2,…,sN=181)  to an 
input vector, composed of five main components 

(c1,c2 ,c3 ,c4 ,cM=5) that correspond to the greatest variance 

in thermal contrast. 

To prepare the learning vectors, we carried out a finite 

element simulation of a CFRP plate, containing defects 

with diameters d = 6mm, d = 10mm, d = 14mm, and d = 

20mm. The depth of the defects varies between 0.1 mm 

and 5 mm. We calculated the evolution above each defect 

for 490 temperature evolutions. To avoid the problem of 

overfitting, we divided the learning data into three data 

sets: training, validation, and testing. The training is done 
with the training set, then evaluations are performed on the 

validation set to control overfitting. When the learning 

seems successful, a final evaluation can be performed on 

the testing set. In our case, we divided the 490 input 

vectors according to the percentage 70% for the network 

training set, 15% for the validation set, and 15% for the 

network testing set[11]. 

In the design of an artificial neural network, there are 

a number of parameters to define that can affect the 

learning of the network, and generally, a lot of 

experimentation is required. Some of these parameters are 

the type of neural network that should be considered, the 
learning algorithm, the number of layers and neurons that 

define the network architecture. In our case, the Levenberg 

Marquard algorithm gave better performances in adjusting 

the neural network’s final weights in comparison with the 

fourteen backpropagation algorithms’ results, most used in 

the training of neural networks. To structure the network, 

we used a neural network with a single hidden layer with a 

sigmoidal activation function, this type of architecture is 

usually sufficient to approximate any nonlinear 

function[12]. For the hidden layer, we fixed the number of 

neurons using an incremental approach where we started 
the learning with a single neuron, then a new neuron was 

added to the hidden layer each time. we compared the 

error of the new network (n + 1 neurons) with the 

preceding one (n neurons); the process will stop when 

adding a new neuron no longer improves accuracy; which 

makes it possible to reduce the number of neurons. 

 

 
Fig. 10. The neural network performance as a function of 

the neurons number in the hidden layer (color online) 
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Fig. 10 shows the results of this incremental study. It 

shows that the use of twelve neurons in the hidden layer 
gave better results. The performance of a neural network is 

evaluated by the value of the mean squared error (MSE) 

(7) representing the mean squared difference between the 

depths obtained by the network (output) et the real 

depths (targets) . The good performances correspond to 

the low MSE values. 

 

(7) 

 

 

4. Results and discussion 
 

We have reported in Fig. 11, the neural network 

learning results; by plotting the variation of the mean 

squared error (MSE) obtained during the three phases, 

training, validation, and test. As can be seen, for the three 

phases, the mean squared error decreases with the increase 

of the number of iterations, to reach the best performance 

(MSE = 0.000117) after188 iterations. 

To test our network, we attempted to estimate defect 
depths with corresponding thermal contrast values with 

defect depths that were not used in the learning phase. 

Table 2 shows the estimated results. 

 

 
 

Fig. 11. The mean squared error variation 
 in the learning stage (color online) 

 

Table 2. Comparison between depth values estimated  
by our neural network and target depths  

 
Test # Target value 

(mm) 

Estimated values 

(mm) 

Gap 

(%) 

1 0.22 0.214 3 

2 0.45 0.429 5 

3 0.62 0.593 3 

4 0.85 0.868 2 

5 1.25 1.189 5 

 

 

We note that the estimated depths by the neural 

network are close to the target values with a gap that does 

not exceed 5%. Following these encouraging results, a 
validation with experimental results is necessary to 

confirm the robustness of the established neuronal model 

in order to estimate the depths of defects that exist in 

industrial sites. 

In order to apply the developed neuronal model above 

to experimental results, we used the experimental data 

(Fig. 12) corresponding to the temperature variation during 

the pulsed thermography control of a CFRP sheet, 

containing 3 defects located at depths of e = 0.25 mm 

curve (a), e = 0.5 mm curve (b) and e = 1 mm curve (c) 

[8]. 
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(a)                                                                       (b) 

 

 
 

(c) 

 
Fig. 12. Experimental curves of the temperature variation measured for a CFRP sample with three defects located at depths of e 

= 0.25 mm (a), e = 0.5 mm (b) and e = 1 mm (c) (color online) 

 

We have compiled in table 3 the results of the 

neuronal model using data from experimental curves a, b, 
and c. Indeed, the differences between the real defect 

depths and those estimated by the neural network from the 

thermal contrast are very low, they do not exceed 7% in 

the worst case, perhaps this is due to small temperature 

fluctuations. Table 3 confirms the effectiveness of the 

neural model developed in estimating the defects depths 

inside CFRP materials. 

 
 
 
 
 
 

Table 3. Comparisons between the depths estimated by the 
network and the real depths 

 

Real defect depth 

(mm) 

Estimated depth 

(mm) 

Gap  
(%) 

0.25 0.235 6 

0.50 0.489 2 

1.00 1.068 7 

 

For future work, this accuracy can be improved by 
using temperature curves containing the heating and the 

cooling phases. Another perspective of future work is to 

improve the proposed neural model in order to assess the 

dimensions of the defect too. 
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4. Conclusion 
 
In this work, a non-destructive control approach, 

using pulsed infrared thermography data, is established to 

estimate the depth of internal defects in CFRP composite 

materials by neural networks. A preprocessing of the 

network training data was done using standard thermal 

contrast. The principal component analysis has reduced the 

number of inputs processed by the neural network by 

using five principal components. The established neural 

model was tested with thermographic data (experimental 

and theoretical) of defects in CFRP composite for 

estimating their depths. The differences between defects 
depths real values and those estimated are very low, they 

do not exceed 7% in the worst case. The obtained results 

showed that the proposed method can be a reliable means 

for composite non-destructive testing. 
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