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1. Introduction 
 
Performance enhancement as well as parallel 

transmission of optical solitons across trans-oceanic and 
trans-continental distances are the key features to 
technological marvel in telecom industry. These can be 
only achieved by the aid of DWDM system where 
parallel transmission of data is possible. This paper will 
address DWDM system for dispersive optical solitons 
that are governed by the Schrödinger-Hirota equation 
(SHE). Although DWDM systems have been studied in 
the past, this paper will consider it in presence of four-
wave mixing (4WM) terms that will make the model 
much closer to reality. With the inclusion of 4WM, it is 
necessary to have phase-matching condition among the 
components to permit integrability. The integration 
algorithm that will be implemented is the modified 
simple equation scheme [1-25]. Both Kerr law and 
parabolic law of nonlinearity are studied in this paper. 
Dark and singular soliton solutions are obtained together 
with their existence criteria that are also presented. 

 
 
2. Overview of modified simple equation  
    method 
 
Here is the nonlinear evolution equation:  

 

0.=,...),,,,,( txttxxxt uuuuuuP                 (1) 

 
 In (1), P  is a polynomial in ),( txu  and its partial 

derivatives where the highest order derivatives and 
nonlinear terms are involved. The main steps of this 
scheme are as follows [2, 3]: 
 

Step-1: The transformation  
 

,=),(=),( ctxutxu                      (2) 

 
where c  is a constant to be determined, reduces Eq. (1) to 
the following ordinary differential equation:  
 

0,=,...),,( uuuQ                          (3) 

 
 where Q  is a polynomial in )(u  and its total derivatives, 

while the notation is .=
d

d'  

Step-2: Assume Eq. (3) permits the structural solution:  
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 where la  are constants to be determined, such that 

0Na , and )(  is an unknown function that is yet to 

be determined. 
Step-3: We find the value of positive integer N  in Eq. (4) 
by considering the homogeneous balance between the 
highest order derivatives with nonlinear terms in Eq. (3). 
Step-4: We plug in (4) into (3) and compute all the 

necessary derivatives 'u , ''u ,   of the unknown function 
)(u  and we account for the function )( . As a result of 

this substitution, we recover a polynomial in )()/(  '  

and its derivatives. In this polynomial, we gather all the 

terms of the same power of 0,1,2,...=),( jj    and its 
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derivatives, equate all coefficients of this polynomial to 
zero. This procedure yields a system of equations that 

needs to be solved to evaluate ka  and )( . Thus, 

finally, one recovers exact solutions of Eq. (1) . 
 
 
3. Application to DWDM system with 4WM 
 
This modified simple equation scheme will be 

applied to DWDM system that appears with 4WM. 
There are two laws of nonlinearity that are going to be 
considered. The study will now be split into the 
following two subsections based on the type of nonlinear 
medium. 

 
 
3.1. Kerr law nonlinearity 
 
For Kerr law nonlinearity, DWDM model with 

4WM reads [4]  
 
( ) ( ) ( )
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l l l
t l xx l xt

N N
l n l l n

l ln ln
n l n l

iq a q b q

c q q q q q  

 

  

   
 

 
 (5) 

 
 Here, Nl 1  . The first term in (5) on left hand side 

is the linear evolution term, while la  represents the 

coefficient of GVD; lb  represents the STD. Then, lc  is 

the coefficient of self-phase modulation (SPM) while 

ln  are the coefficients of cross-phase modulation 

(XPM), while ln  accounts for 4WM. The independent 

variables are x and t that represents the spatial and 
temporal variables respectively. The dependent variable 

is ),()( txq l  that represents soliton profile in every 

single channel for Nl 1  . 
In order to solve (5) for solitons, the following 

solution structure is taken into consideration:  
 

,)(=),(
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l
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                  (6) 

 
where the wave variable   is given by  

 
).(= vtxk                             (7) 

 

Here, )(lP  represents the amplitude component of the 

soliton solutions and v  is the speed of the soliton, while 

the phase component ),( txl  is defined as  

 

,=),(   txtxl                  (8) 

 

 where Nl 1 . Here ),( txPl  represents the amplitude 

portion of the soliton and from the phase component,   is 
the frequency of the soliton,   is the wave number of the 

soliton and finally   is the phase constant. Substituting (6) 
into (5) and decomposing into real and imaginary parts lead 
to  
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and  
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The imaginary part equation leads to the speed of the 

soliton that is given by  
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Using the balancing principle leads to  
 

.= ln PP                                  (12) 

 
Consequently, Eqs. (9) reduces to  
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Balancing ''
lP  with 3

lP  in Eqs. (13), then we get 1=N . 

Consequently we reach  
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 Substituting Eq. (14) in Eq. (13) and then setting the 

coefficients of 0,1,2,3,=  ),( jj    to zero, then we 

obtain a set of algebraic equations involving 0a , 1a , k ,  , 

ln , ln  lb , v  and   as follows: 
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 0  coeff.:  
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Solving this system, we obtain  
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From Eqs. (20) and (21), we can deduce that  
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where 1c  and 2c  are constants of integration. Substituting 

Eq. (22) and Eq. (23) into Eq. (14), we obtain following the 
following exact solution to Eq. (5).  
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If we set  
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we obtain: 
 

 

2
( )

2

02

( , ) =
( )

tanh ( ( ) )
2

l l l
N

l ln ln
n l

l l

l l

a b
q x t

c

a b
k x vt

k a vb

  

 

   



 


 

  
   

  


    (25) 

 ,)(   txie  

or  
 

 

2
( )

2

02

( , ) =
( )

coth ( ( ) )
2

l l l
N

l ln ln
n l

l l

l l

a b
q x t

c

a b
k x vt

k a vb

  

 

   



 


 

  
   

  

    (26) 



406                                                        Ahmed H. Arnous, M. M. Babatin, Mir Asma, Anjan Biswas 

 
 ,)(   txie  

where v  is given by (11). Solutions (30) and (31) are 
valid when  
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3.2. Parabolic law nonlinearity 
 
This law is alternatively known as the cubic-quintic 

nonlinearity. For parabolic law nonlinearity, DWDM, 
with 4WM, is modeled as [14]:  
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for Nl 1  . In (29), SPM terms are the coefficients 

of lc  and ld  , while XPM coefficients are ln , ln  

and ln  . Also, the terms with ln , ln , ln  and ln  

are accounted for 4WM in parabolic law medium. 
In this case, substituting (6) into (29), leads to 

the same imaginary part as given by (10). Again, the 
speed will be the same as (11). The real part equation 
however is  
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Using the balancing principle leads to  
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Consequently, Eqs. (30) reduces to  
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so that (32) transform to  

 

  
 

2 2

2 2

3

4

2

4

4 ( )

4 ( ) = 0.

'' '
l l l l l

l l l

N

l ln ln l
n l

N

l ln ln ln ln ln l
n l

k a vb U U U

b a U

c U

d U

  

 

    





  

  

    
 
      
 





(34) 

  

Balancing ''
llUU  with 4
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Substituting Eq. (35) in Eq. (34) and then setting the 

coefficients of 0,1,2,3,4=  ),( jj    to zero, then we 

obtain a set of algebraic equations involving 0a , 1a , k ,  , 

ln , ln , ln , ln , ln  lb , v  and   as follows: 
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 Solving this system, we obtain  
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From Eqs. (42) and (43), we can deduce that  
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where 1c  and 2c  are constants of integration. Substituting 

Eq. (44) and Eq. (45) into Eq. (35), we obtain following the 
following exact solution to Eq. (29).  
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If we set  
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Solutions (47) and (48) are valid when  
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4. Conclusions 
 
This paper obtained dark and singular soliton 

solutions to DWDM system that was studied in presence 
of 4WM. The modified simple equation approach was 
adopted to obtain the soliton solutions that appeared 

under restrictive conditions which, in this paper, are referred 
to as constraint conditions. The results are novel and 
meaningful although an inherent drawback of this 
integration algorithm is that it fails to retrieve the much 
needed bright soliton solution. Several other integration 
schemes are nevertheless available to secure bright soliton 
solutions. A few of them are extended trial equation method, 
Bernoulli’s algorithm, Kudryashov’s technique and several 
others. The results of the application of these schemes will 
be reported elsewhere. 
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