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1. Introduction 
 

DWDM technology is essential for parallel 

transmission of loads of data across the globe. 

Therefore, it is imperative to advance this technology in 

its most optimal form. This DWDM system is modeled 

by vector coupled nonlinear evolution equation (NLEE). 

It typically stems from nonlinear Schrödinger’s equation 

(NLSE). However, dispersive solitons stem from 

Schrödinger-Hirota’s equation (SHE) that models the 

dynamics of dispersive optical solitons in a polarization-

preserving fiber. This paper addresses DWDM system 

for dispersive optical solitons by the aid of a couple of 

integration techniques. DWDM system as well as other 

NLEEs have been extensively studied in the past by the 

aid of several integtaion tools that led to plentiful 

interesting solutions including solitons and shock waves. 

A few of them are the method of undetermined 

coefficients, extended trial equation method, /'G G -

expansion scheme and several others [1-11]. This paper 

will employ a couple of such powerful tools to extract 

dispersive solitons in such a system.  

 
 
1.1. Mathematical Model of DWDM Systems 

 
The dimensionless form of the governing equation 

for DWDM system is given by [1]  
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where .Nll   The first term in (1) on left hand side is 

the linear temporal evolution term, while la  represents the 

coefficient of group velocity dispersion (GVD) and the 

coefficient of lb  is the spatio-temporal dispersion. Then, the 

coefficient of l  is the third order dispersion. Also, lc  is the 

SPM while lnd  gives XPM. Finally, l  and ln  are from 

nonlinear dispersions. 

This paper will integrate (1) to retrieve its soliton 

solutions by the application of Riccati-Bernoulli sub-ODE 

(ordinary differential equation) method and modified 

Kudryashov’s algorithm. 

 

 

2.  Mathematical analysis 
 

In order to solve (1) for solitons, the following phase-

amplitude form of decomposition for the wave profile 

),()( txq l
 is carried out.  
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 where )(lP  represents the shape of the pulse and  
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 and the phase component is defined as  

 

  ,=, llll txtx               (4) 

 

 here .Nll   Here ),( txPl  represents the 

amplitude portion of the soliton and from the phase 

component, l  is the frequency of the soliton, l  is the 

wave number of the soliton and finally l  is the phase 

constant. Substituting (2) into (1) and decomposing into 

real and imaginary parts lead to  
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2.1. RICCATI – BERNOULI Sub – ODE method 

 

The balancing effect leads to  

 

 nl PP =                                    (7) 

 

 Consequently, Eqs. (5), (6) modify to  
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Integrating Eq. (9) with respect to ,  gives  
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where integration constant is taken to zero, without any loss 

of generality. In this section, the Riccati-Bernoulli sub-ODE 

method [8, 9, 11] will be introduced in details to obtain 

soliton solutions to Eq. (1). Suppose that the solution of Eqs. 

(8), (10) leads to Riccati-Bernoulli equation  
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where ,,, CBA  and m  are constants to be determined 

later. 

 

Substituting Eq. (11) into Eq. (8), we get  
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Setting 0,=m  Eq. (12) is reduced to 
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Setting each coefficient of 0,1,2,3)=( jP j

l  to zero, 

we get  
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Solving Eqs. (14) - (17), we get  
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 0,A                               (20) 

 

 0,C                                (21) 

 

 0.=B                                 (22) 

 

Substituting Eq. (18) into Eq. (19), we get  
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This relation (23) introduce the constraint:  
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Substituting Eq. (11) into Eq. (9), we get  
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Setting 0,=m  Eq. (25) is reduced to  

 

2

2 2 2

2 2 2 2 3

( 1) 2

3 (2 )

1
3 2 = 0,

3

l l l l l l l

l l

l l l

N

l l l ln l l

l n

b v b a
BC K P

K AC B

AB K P A K P

   


  

   


     
  

    

  
     

  


 

                                                              (26) 

 

Setting each coefficient of 0,1,2,3)=( jP j

l  to zero, 

we get  
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Solving Eqs. (27) - (30), we get  
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 0,A                                    (33) 

 

 0,C                                    (34) 

 

 0.=B                                    (35) 

 

Substituting Eq. (18) into Eq. (31), we get  
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Equating the wave number from (19) and (31) gives 

the constraint as  
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When 0,1,  Am  and 0,<42 ACB   the 

solutions of Eq. (11) are [11]  
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When 0,1,  Am  and 0,>42 ACB   the 

solutions of Eq. (11) are  
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Case-A: When 0,>AC  we get exact solutions of Eq. 

(1),  
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where l  is given by Eq. (23) or Eq. (36). Three constraint 

conditions for the existence of these analytical solutions to 

exist are given by Eqs. (24), (32) and (37). 

 

Case-B: When 0,<AC  we get exact solutions of Eq. 

(1),  
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and  
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which are dark and singular soliton solutions 

respectively. Here, l  is given by Eq. (23) or Eq. (36). 

Three constraint conditions for the existence of these 

analytical solutions to exist are given by Eqs. (24), (32) 

and (37). 

Fig. 1 shows the profile of a dark 1-soliton solution 

for the parametrers 

 

 
Fig. 1. 
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2.1.1. BÄCKLUND Transformation of RICATTI- 

         BERNOULLI equation 

 

When )(1 ng  and   )(=)()( 1  nnnn gggg  are 

the solutions of Eq. (11), we get  
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Integrating above equation once with respect to   and 

simplifying it, we get  
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where 
1K  and 

2K  are arbitrary constants. Equation (48) is 

a Bäcklund transformation of Eq. (11). If we get a solution 

of Eq. (48), we can search for new infinite sequence of 

solutions of Eq. (11) by using Eq. (48). Then an infinite 

sequence of solutions of Eq. (1) is obtained. 

Applying Eq. (48) to 1,2,3,4),=)(,()( jtxq l

j  we can 

get an infinite sequence of solutions of Eq. (1). By applying 

Eq. (48) to ),()( txq l

j  for 5,6,7,8=j  once, when 

0,<AC  we get new solutions of Eq. (1),  
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and  
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where l  is given by Eq. (23) or Eq. (36). Three 

constraint conditions for the existence of these analytical 

solutions to exist are given by Eqs. (24), (32) and (37). 

 

When 0,>AC  we get new solutions of Eq. (1),  
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and  
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where l  is given by Eq. (23) or Eq. (36). Three constraint 

conditions for the existence of these analytical solutions to 

exist are given by Eqs. (24), (32) and (37). 

Fig. 2 shows the profile of a dark 1-soliton solution for 

the parametrers 

 

 
 

Fig. 2. 
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2.2.  Modified KUDRYAS HOV’S method 

 

In this section, a new and effective version of 

Kudryashov method is used to produce new exact 

traveling wave solutions of the Eq. (1) in non-linear 

optics. According to the modified Kudryashov method 

[3, 4], Eq. (8) has the solution in the form  
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Now, upon solving the resulting system, we find  
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This relation (62) introduce the constraint:  
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By substituting Eq. (53) into Eq. (10) and equating the 

coefficients of the same powers of ),(Q  we obtain a 

system of nonlinear algebraic equations and by solving it, 

we get  
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Additionally, Eqs. (64), (65) poses the restriction that is 

given by  
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Equating the wave number from (62) and (66) gives the 

constraint as  
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This yields  
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From Eqs. (2) and (69), we get new exact solution 

of  Eq. (1), 
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where l  is given by Eq. (62) or Eq. (66). Three 

constraint conditions for the existence of these analytical 

solutions to exist are given by Eqs. (63), (67) and (68). 

 

 

3. Conclusions 
 

This paper retrieved dispersive dark and singular 

optical soliton solutions to DWDM sys tem that stems 

from SHE. Two integration schemes were employed. 

They are Riccati-Bernoulli sub-ODE approach and the 

modified Kudryashov’s method. The constraint 

conditions for the existence of such solitons are also 

given. These two powerful techniques yielded soliton 

solution to a class of important NLEEs and thus the scheme 

stands on a strong footing for future research activities. 

Later, this scheme will be applied to other models that will 

also retrieve soliton solutions in optical fibers, PCF, 

metamaterials, couplers and other forms of optical devices. 

The results are however awaited at the present time. 
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