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The perturbed nonlinear Schrödinger–Hirota equation with spatio–temporal dispersion that governs the propagation of 

dispersive pulses in optical fibers is investigated in this study using three methods that are the Csch method, Tanh–Coth 

method and modified simple equation method. The Kerr and power laws of nonlinearity are taken into account. Bright 

soliton, dark soliton, singular soliton, mixed bright–dark soliton and periodic solutions are retrieved. Many constraint 

conditions required for the existence of solutions emerge from the integration methods. Furthermore, we demonstrate the 
dynamical behaviors and physical significance of these solutions by using different parameter values.  
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1. Introduction 

 
The nonlinear Schr dinger Equation (NLSE) is a 

nonlinear partial differential equation (NPDE) which 

occurs in many physical situations in fluid mechanics 

and hydrodynamics to describe the development of 

surface gravity water waves. It also has numerous 

applications in nonlinear optics, mathematical finance, 

fluid dynamics, plasma physics, biochemistry, nuclear 

physics, superconductivity describing solitary wave 

propagation in piezoelectric semiconductors, condensed 

matter, solid-state physics characterizing the propagation 

of a heat pulse in a solid, and so on [1–6]. Several 

techniques have been developed to extract soliton 

solutions to NPDEs, such as the following: the modified 

direct algebraic method [7], Jacobi elliptic function 

method [8], sub-equation method [9,10], F-expansion 

method [11], sine–Gordon expansion method [12,25], 

Sardar sub-equation method [13], (G'∕G)-expansion 

method [14], Kudryashov method [15–17], new 

extended direct algebraic method [18,28], homogeneous 

balance method [19], modified simple equation [20,27], 

modified Kudryashov's method [25,26], exp-expansion 

method [25,26], and substantially more.  

 

 

1.1. Governing model 

 

The perturbed nonlinear Schr dinger–Hirota equation 

with spatio–temporal dispersion (STD) is considered in the 

form [21]: 

 

 
 

 
 

          (1) 

 

where ,  and  are respectively the coefficients of the 

group velocity dispersion (GVD), the STD, and the third 

order dispersion (3OD). The parameters  and  are 

respectively the coefficients of Kerr law nonlinearity and 

nonlinear dispersion. The coefficient and  are 

respectively the inter-modal dispersion (IMD), the self-

steepening, and the nonlinear dispersion. The complex 

function  is the soliton profile, where  and  are 

spatial and temporal variables respectively. Lastly, the first 

term arises from the temporal evolution, where . 

We also investigate the optical solitons with the model 

having the power law nonlinearity that governs the 

propagation of dispersive pulses in optical fibers defined by 

[21] 
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   (2) 

 

where  is the general power law parameter. 

Three methods (Csch, Tanh–Coth and modified 

simple equation) are employed to extract optical soliton 

solutions. 

 

2. Travelling wave solution 
 

The solutions of Eq. (1) or Eq. (2) are supposed as 

 

                        (3) 

 

where  and .  

and  are the amplitude and phase components of 

the soliton wave, respectively.  is the soliton speed, k is 

the soliton frequency, ω is the soliton wave number and 

 is the phase constant. 

Eq. (1) can be also decomposed into real and 

imaginary parts. The real part of Eq. (1) is: 

 

 
 

 
 

   (4) 

 

while the complex part of Eq. (1) is: 

 

 
 

              (5) 

 

Integrating Eq. (5) gives: 

 

 
 

              (6) 

 

Now comparing the coefficient of in 

Eqs. (4) and (6) results the following conditions: 

 

                        (7) 

 

                      (8) 

 

and the soliton's speed as: 

 

          (9) 

 

Substituting Eqs. (7)–(9) in Eq. (4) gives: 

 

                   (10) 

where 

 

                                   (11) 

 

                    (12) 

 

            (13) 

 

 
3. Methodology 

 
In this section, we will apply three different methods to 

solve Eq. (10). These methods are the Csch method, 

extended Tanh–Coth method and modified simple equation 

method. 

 

3.1. Csch function method 

 
The solutions of many are expressed in the form [22]: 

 

                            (14) 

 

and 

 

              (15) 

 

           (16) 

 

where  μ and  are parameters to be determined. μ and λ 

are the wave number and wave speed of the soliton, 

respectively. 

Substituting Eqs. (14)–(16) into the reduced equation 

(10), we get 

 

 
 

         (17) 

 

Balance the terms of the csch functions in Eq. (17), i.e.  

 , then 

 

                                   (18) 

 

Collecting all terms in Eq. (17) with the same power in 

 for k =1 and 3 and setting their coefficients to 

zero, we get a system of algebraic equations among the 

unknown's   and μ, to the subsequent system: 

 

 
 

                           (19) 

 

Solving the system of equations in (19), we get: 

               (20) 
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The singular soliton solution to the model is 

therefore given as:  

 

 
 

                       (21) 

 

where 

. 

 

3.2. Tanh–Coth method 

 
To introduce the ansatz, the new independent 

variable is considered as [23] 

 

                           (22) 

 

and 

 

                           (23) 

 

        (24) 

 

The solution is expressed in the form 

 

             (25) 

 

where the parameter p can be found by balancing the 

highest–order linear term with the nonlinear terms in the 

reducing equation. 

For the reducing equation (10), we balance  with  

 to obtain , then 

 

                                     (26) 

 

The Tanh–Coth method admits the use of the finite 

expansion for 

 

                 (27) 

 

                       (28) 

 

                         (29) 

 

Substituting  and  into Eq. (10) yields 

 

 
 

 
 

               (30) 

 

where   and 
 
are to be determined. 

Equating expressions at   to 

zero, we have the following system of algebraic equations: 

 

 
 

 
 

 
 

 
 

                   (31) 

 

Solving the system of equations (31), we get: 

 

 

 

          (32) 

 

The dark–singular soliton solution to the model is 

therefore presented as below 

 

 
 

                        (33) 

 

where 

 

 

The periodic soliton solution to the model is also 

structured as 

 
 

                          (34) 

 

where 

 

 

 

3.3. The modified simple equation method 

 
We look for the solutions of Eq. (10) in the form [24]: 
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                            (35) 

                     (36) 

 

            (37) 

 

Then Eq. (10) can be written as 

 

 
 

 
 

                  (38) 

 

Equating expressions at   to 

zero, we have the following system of equations: 

 

 
 

 
 

 
 

                       (39) 

 

Solving the system of equations in (39), we get: 

 

 

              (40) 

 

                       (41) 

 

                       (42) 

 

From Eqs. (41) and (42), we can deduce that 

 

                     (43) 

 

and 

 

                    (44) 

where  and  are constants of integration. Substituting 

Eqs. (43) and (44) into Eq. (35), we obtain the following 

exact solution to Eq. (1): 

 

 
 

                          (45) 

 

If we set  we obtain: 

 

 
 

                        (46) 

 

 
 

                         (47) 

 

 
 

                          (48) 

 

 
 

                         (49) 

 

Eqs. (46) and (47) represent dark soliton and singular 

soliton solutions, respectively. These solitons are valid for 

. Eqs. (48) and (49) also represent singular 

periodic solutions that are valid for . The surface 

plot of soliton (46) is depicted in Fig. 1. The parameter 

values chosen are: a4 = 1, k = 1, γ = 1, ξ = 1, a2 = 1, ω = 1, 

b1 = -3, a5 = 1, b2 = 1 and b3 = 1.  
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Fig. 1. Profile of dark soliton in optical fibers (color online) 

 

4. Application to the model with power law  
     nonlinearity 
 

Let consider the transformation defined in Eq. (3) to 

split Eq. (2) respectively into real and imaginary parts 

as: 

 

 

 
 

        (50) 

 

 
 

        (51) 

 

Integrating Eq. (51) with respect to ξ results: 

 

 
 

        (52) 

 

Comparing Eq. (52) with Eq. (50), we get: 

 

              (53)  

 

   (54) 

 

            (55) 

 

Substituting Eqs. (53)–(55) into Eq. (52) gives: 

 

                  (56) 

 

where 

 

                       (57) 

 

             (58) 

 

            (59) 

 

Balancing 𝑢 ′′ with  in Eq. (56), we get 𝜏= 1/n. To 

obtain closed form solutions, we consider the transformation 

 

                                     (60) 

 

to reduce Eq. (56) to the below equation: 

 

 
 

                   (61) 

 

4.1. The csch method 

 
The solution of Eq. (61) is expressed in the form of Eq. 

(14). Balancing  with  in Eq. (61) gives 𝜏 = 1. From 

Eqs. (14)-(16), Eq. (61) becomes 

 

 
 

      (62) 

 

Collecting all coefficient of , for k = 2 and 4 

to be equal zero, we have 

 

 
 

                  (63) 

 

Solving the system (63), we get: 

 

            (64) 

 

The singular soliton solution to the model with power 

law of nonlinearity is therefore formulated as 

 

 

 

                       (65) 

 

where 
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4.2. The Tanh–Coth method 

 

Substituting  and   into Eq. (61) results the 

following: 

 

 
 

 
 

         (66) 

 

where  and  are to be determined. Eq. (66) can be 

written as: 

 

 
 

 
 

 
 

.  (67) 

 

Equating expressions at  to zero, we have the 

following system of algebraic equations: 

 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

.              (68) 

 

Solving the system of equations (68), we get: 

 

 

 
 

                   (69) 

 

The dark–singular soliton solution of the model is 

therefore introduced as below 

 

 
 

                         (70) 

 

where 

 

 
 

 
5. Conclusions 

 
This paper retrieves new travelling wave solutions.  The 

Csch method, extended Tanh–Coth method and modified 

simple equation method are applied to get results that are of 

great asset to the nonlinear Schr dinger–Hirota equation. 

They are used to carry out the integration of nonlinear 

Schr dinger–Hirota equation. The obtained solutions are 

under certain conditions and are very useful and may be 

important to explain some physical phenomena and find 

applications in the nonlinear evolution equations. The results 

of this paper will be of great future need. The results of those 

research findings will be available down the road.   

 



Dispersive optical solitons with Schrödinger–Hirota equation by a couple of integration schemes                        209 

 

References  

 
  [1] C. Sulem, P. L. Sulem, New York: Springer– 

        Verlag, 1999. 

  [2] M.  J. Ablowitz, Nonlinear Dispersive Waves,   

         Cambridge University Press, 2011. 

  [3] M. J. Ablowitz, B. Prinari, A. D. Trubatch. Discrete  

        and Continuous Nonlinear Schrodinger System,  

        Cambridge University Press, 2004. 

  [4] I. K. Mylonas, C. B. Ward, P. G. Kevrekidis,  

        V. M. Rothos, D. J. Frantzeskakis, Phys. Lett. A  

        381, 3965, (2017). 

  [5] A. H. Ahmed, M. Z. Ullah, M. Asma, Q. Zhou,           

        M. Mirzazadeh, A. Biswas, M. Belic, Optik 136,  

        445 (2017). 

  [6] K. Hosseini, K. Sadri, M. Mirzazadeh,  

       S. Salahshour, Optik 229, 1 (2021). 

  [7] W. Li, L. Akinyemi, D. Lu, M. Khater, Symmetry  

        13(6), 1085 (2021). 

  [8] E. A. Az-Zobi, W. A. Alzoubi, L. Akinyemi,  

       M. Şenol, B. S. Masaedeh, Modern. Phys. Lett. B  

       35(15), 2150254 (2021). 

  [9] L. Akinyemi, M. Senol, O. S. Iyiola, Math.  

        Comput. Simulation 182, 211 (2021). 

[10] M. Senol, L. Akinyemi, A. Ata, O. S. Iyiola, Int. J.  

        Modern Phys. B 35(2), 2150021 (2021). 

[11] D. Lu, Z. Zhang, Int. J. Nonlinear Sci. 24(2),  

        96 (2017). 

[12] D. Kumar, K. Hosseini, F. Samadani, Optik 149,  

        439 (2017).  

[13] A. Houwe, S. Yakada, S. Abbagari, Y. Saliou,  

        S. Y. Doka, Eur. Phys. J. Plus 136(4), 1 (2021). 

[14] M. Shakeel, S. T. Mohyud-Din, Journal of the  

       Association of Arab Universities for Basic and  

       Applied Sciences 18, 66 (2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[15] N. A. Kudryashov, Communications in Nonlinear  

        Science and Numerical Simulation 17(6), 2248 (2012). 

[16] N. A. Kudryashov, Optik 206, 163550 (2020). 

[17] L. Akinyemi, K. Hosseini, S. Salahshour, Optik  

        242, 167120 (2021). 

[18] M. Senol, Revista mexicana de fisica 66(3), 297 (2020). 

[19] H. Jafari, H. Tajadodi, D. J. Baleanu, Comput.  

        Nonlinear Dyn. 9(2), 021019 (2014). 

[20] A. Biswas, Y. Yildirim, E. Yasar, H. Triki,  

        A. S. Alshomrani, M. Z. Ullah, Optik 158,  

        399 (2018). 

[21] L. Akinyemi, H. Rezazadeh, Q. H. Shi, M. Inc,  

        M. A. Khater, H. Ahmad, A. Jhangeerj,  

        M. A. Akbar, Results Phys. 29, 104656 (2021). 

[22] A. J. A. M. Jawad, M. J. Abu-AlShaeer,  

        E. M. E. Zayed, M. E. Alngar, A. Biswas, M. Ekici,  

        A. K. Alzahrani, M. R. Belic, Optik 223,  

        165329 (2020). 

[23] A. J. A. M. Jawad, A. Biswas, Q. Zhou, M. Alfiras,  

        S. P. Moshokoa, M. Belic, Optik 178, 172 (2019). 

[24] A. J. A. M. Jawad, M. D. Petković, A. Biswas,  

        Appl. Math. Comput. 217(2), 869 (2010).  

[25] A. Biswas, H. Rezazadeh, M. Mirzazadeh,  

        M. Eslami, M. Ekici, Q. Zhou, S. P. Moshokoa,  

        M. Belic, Optik 165, 288 (2018). 

[26] A. Biswas, H. Rezazadeh, M. Mirzazadeh,  

        M. Eslami, Q. Zhou, S. P. Moshokoa, M. Belic,  

        Optik 164, 380 (2018). 

[27] A. Biswas, M. O. Al-Amr, H. Rezazadeh,  

        M. Mirzazadeh, M. Eslami, Q. Zhou,  

        S. P. Moshokoa, M. Belic, Optik 165, 233 (2018). 

[28] H. Rezazadeh, Optik 167, 218 (2018). 

 

_____________________________ 
*Corresponding author: biswas.anjan@gmail.com 

https://www.sciencedirect.com/science/article/abs/pii/S0030402617301948#!
https://www.sciencedirect.com/science/article/abs/pii/S0030402617301948#!
https://www.sciencedirect.com/science/journal/00304026/136/supp/C
https://www.sciencedirect.com/science/journal/22113797
https://www.sciencedirect.com/science/journal/22113797/29/supp/C

