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In this work, graphene based Langmuir-Blodgett (LB) thin films prepared onto gold-coated glass substrates to evaluate its 
sensing ability by using Surface Plasmon Resonance (SPR) system. In order to illuminate the swelling characteristics of the 
graphene optical sensor, the diffusion coefficients of these vapors were calculated by applying the early-time Fick’s diffusion 
equation. The diffusion coefficients are found to be 0.1954 x 10−15, 0.0696 x 10−15 and 0.0197 x 10−15 cm2 s−1 for benzene, 
toluene, and xylene, respectively. The nonlinear autoregressive with exogenous input neural network was designed by 
utilizing experimental data from SPR kinetic results to model the change in photodetector response. The calculated diffusion 
coefficients using artificial neural network model are approximately equal to real-data diffusion coefficients as verified by very 
high correlation coefficients (0.1948 x 10−15, 0.0760 x 10−15 and 0.0198 x 10−15 cm2 s−1 for benzene, toluene, and xylene, 
respectively). Consequently, graphene-based optical sensors displays high response and sensitivity for saturated benzene 
vapor than other vapors. These optical thin film sensors were potential candidates for organic vapor sensing applications with 
simple and low cost preparation at room temperature. 
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1. Introduction 
 

With the rapid advancement in industrial area, the 

environment health has been affected and these 

developments have led to an increase in air pollution. This 

pollution has severely affected the day-to-day life of people 

that includes harmful volatile organic compounds (VOCs), 

dusts and toxic smokes. Among them, VOCs are the most 

hazardous materials, which threaten the earth we live today. 

Therefore, the detection of VOCs play crucial role in 

different fields such as air quality monitoring [1], industrial 

safety [2] and medical diagnosis [3]. Interest in the 

detection of VOCs at high sensitivity and low detection 

limit has risen over the past decade.  

In recent years, there is an increasing demand for 

improvement of the sensing materials, which can detect 

VOCs, including nanocomposites [4], macromolecules [5], 

polymers [6], ionic liquids [7] and carbon-based materials 

[8] with low detection limits. Among the available 

materials, graphene, graphene oxide (GO) and reduced 

graphene oxide (rGO) as carbon-based materials have 

already been used as a chemical sensor because these 

material shows excellent properties, such as a heat 

conductivity, high-speed electron mobility at room 

temperature, a large number of chemically active sites, 

specific surface area and unique hydrophilic properties 

[9,10]. A suitable kinetic measurement technique to the 

detection of VOCs is as important as choose of the sensitive 

materials in chemical sensor applications. Surface Plasmon 

Resonance (SPR) is one of the most preferred techniques to 

investigate the interaction between two molecules (host-

guest molecules) of interest due to its significant advantages 

such as high reliability and real-time analysis with high 

sensitivity [11]. 

Developing mathematical model of an experimental 

process helps to analyze the experimental study with an 

analytical approach. Among these mathematical models, 

artificial neural networks are one of useful tools for 

modeling nonlinear data and processes [8]. Artificial neural 

networks are widely used in data modeling due to its less 

complexity, inclusion of low-cost calculations and learning 

capacity [12].  Artificial neural networks have become 

popular research topic due to its interdisciplinary features. 

Independent from the area of application, it can be used for 

modelling any data. Considering the literature, many 

studies in different science areas for data modelling using 

ANNs can be found such as the modelling of: the 

physiological processes [13], the capacities of carbon 

dioxide absorption for some materials [14], the gyroscope 

platform [15], nonlinear responses of the radio frequency 

(RF) amplifier [16], the load displacements curves [17], and 

the magneto-rheological damper [18]. In another studies, 

the mathematical models are developed to solve the cutting 

force problem for metals [19] and for railway electrical 

consumption using ANN model [20]. 

This work focuses on investigation of VOCs swelling 

behaviors of graphene-based LB thin film molecule using 

early-time analysis of Fick’s law of diffusion based on the 
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change in the reflected light intensity. The graphene-based 

SPR optical sensor films are subjected to the saturated 

aromatic BTX (benzene, toluene, xylene) hydrocarbons for 

investigating the swelling mechanism in the sensor 

application. To the best of our knowledge, this is the first 

report on graphene swelling properties and an accurate 

calculation of diffusion coefficients of selected VOCs for 

graphene-based LB thin films, which are tested with SPR 

technique. Thanks to the designed NARX-ANN model, the 

calculated diffusion coefficients from Fick's diffusion 

equation can be validated. 

 

 
2. Experimental details 
 

2.1. Preparation of graphene LB thin film 

 

Fig. 1 presents the chemical structure of graphene 

molecule which is selected LB thin film materials. 1.88 mg 

mL-1 concentration of graphene and chloroform + DMF 

solutions was prepared to use during the fabrication of 

graphene LB thin film onto gold-coated glass substrates. 

The Y type (the selected deposition type) graphene LB thin 

films were prepared at a surface pressure of 18 mN m-1, and 

this suitable value was determined from the isotherm graph 

which was reported in our previous study [21]. All graphene 

LB thin film fabrication process was fixed at room 

temperature. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Chemical structure of graphene molecule 

 

2.2. SPR measurement technique 

 

The SPR technique is based on the principle that 

incident light can stimulate free electrons delocalized on a 

metallic film to generate surface plasmons under particular 

conditions. The SPR technique, which is one of the main 

optical techniques, can measure host-guest interactions in 

real time and allows monitoring of poorly bound 

interactions due to its high degree of surface sensitivity. A 

binding contact between the surface and the target 

molecules changes the local refractive index, causing the 

SPR angle to shift. To obtain selectivity for specific 

chemicals or biomolecules, the sensor surface is 

functionalized with selective receptors. The SPR 

technique is being utilized to develop low-cost, high-

resolution chemical and biochemical optical sensors. Since 

the metal film, incident light and temperature are constant 

in experiments, SPR signals obtained in the kinetic 

measurements are directly dependent on the shift in 

refractive index of the sensor surface environment. In this 

study, a BIOSUPLAR 6Model SPR Spectrometer was 

utilized to perform all SPR kinetic measurements. During 

the SPR measurements: (i) a glass prism (with a refractive 

index of 1.515) was fixed to a holder to take measurements 

in an air environment, (ii) a laser diode at a wavelength of 

632.8 nm was employed as a light source, and (iii) gold-

coated (50 nm) glass slides were used to obtain SPR signals. 

In all SPR kinetic experiments, the samples were exposed 

to VOCs for two minutes at a time, and then the recovery 

process was realized by injecting fresh air for another two 

minutes. Fig. 2 shows a symbolic representation of the SPR 

kinetic measurement system. 
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Fig. 2. A shematic diagram of the surface plasmon resonance measurement system (color online) 

 
2.3. Neural network model 

 

Artificial neural networks are widely used in nonlinear 

data modeling. ANNs are consist of input layer, hidden 

layer(s) and output layer. Each layer includes some amount 

of neurons which is determined by the user/programmer. 

Input layer accepts the input signals and using weights of 

neurons; transfers the weighted inputs to the hidden 

layer(s). Hidden layer(s) perform nonlinear transformations 

to its input signals. Output layer, by using the inputs from 

hidden layer, calculates the model output for ANN. Basic 

diagram of an artificial neural network is given in Fig. 3. 

 

 

 
 

Fig. 3. Basic diagram of an artificial neural network (color online) 

 

ANNs have different topologies to create a model using 

measurements. For this study, due to its success in nonlinear 

time series data modeling, a NARX-ANN is designed for 

setting up a model for the shifts in the reflected light 

intensity of benzene, toluene and xylene. NARX-ANNs are 

defined as artificial neural network with exogenous input. 

This type of ANN may use the time-shifted signals of both 

input and ANN output. Resulting output expression of ANN 

is a function of exogenous input and its output with 

delay(s).  

For modeling the shifts in the reflected light intensity 

of benzene, toluene and xylene, a NARX-ANN given in 

Fig. 4 is designed. Designed NARX-ANN is consist of 

input layer, one hidden layer with 8 neurons and output 

layer. 
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Fig. 4. Architecture of designed NARX-ANN (color online) 

 

Input 𝑥 of the NARX-ANN is current value of time 

instant where 𝑦[𝑘 − 1], 𝑦[𝑘 − 2], 𝑦[𝑘 − 3] are time 

delayed samples of ANN model output and used as internal 

inputs to the ANN. 

 

 
3. Result and discussion 
 

3.1. Sensing properties of graphene-based optical    

       sensor 

 

In this work, kinetic measurements for a candidate 

chemical sensor material (graphene) sensitive to optical 

changes were carried out using SPR technique. In Fig. 5, a 

host-guest interaction between the graphene-based optical 

sensor and VOCs is presented by recording the 

photodetector responses as a function of time. Benzene, 

toluene and xylene (BTX) were periodically released into 

the VOCs cell for 120 seconds, in the following order: fresh 

air-VOCs- fresh air-VOCs -…-fresh air. The responses of 

the graphene-based LB thin film to all BTX vapors 

increased abruptly due to the guest molecule’s adsorption 

on the thin film, and then decreased exponentially over 

several seconds due to the initiation of the diffusion process. 

Then, the kinetic response of graphene-based optical sensor 

reaches the fixed value and it can be explained that the 

amount of the adsorbed and the desorbed molecules is 

approximately equal. At 240 s, the fresh air is moved to the 

surface of graphene-based optical sensor to observe 

whether the response value of optical sensor returns to the 

initial value or not. 

 

 

 

 

 
 

Fig. 5. The photodetector responses of the graphene-based optical sensor (color online) 
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The swelling dynamics of the graphene-based optical 

sensor were revealed by using Fick's second diffusion law 

[22] to calculate the diffusion coefficient values for all 

VOCs utilized in this work at saturated concentration. The 

diffusion process, which begins with the introduction of the 

vapor into the gas chamber, is responsible for the 

exponential decrease in sensor response, which is depicted 

in Fig. 5 in terms of reflected light intensity and occurs 

between 120 and 240 seconds. 

Fig. 6 depicts a swelling cycle for three different 

VOCs, with the normalized intensity of reflected light 

plotted against the diffusion time, which begins at t= 0. The 

diffusion coefficients (D) of VOCs, as reported in our 

previous studies [11, 23], can be calculated using this data 

in the advanced early-time Fick’s diffusion equation. 

 

 

 
 

Fig. 6. Normalized the photodetector response against swelling time for VOCs (color online) 

 

The normalized intensity of reflected light is plotted 

against the square root of swelling time in Fig. 7 (for 

benzene, toluene and xylene). The diffusion coefficient for 

the swelling of the graphene film can be calculated using 

the slopes of the linear regions. The diffusion coefficients 

for all VOCs are presented in Table 1. 

 

 
 

Fig. 7. The square root of diffusion time versus the change in the intensity of reflected light graph for benzene (color online) 

 

All kinetic studies conducted with graphene-based 

optical SPR sensors demonstrate that the sensing response 

for the examined organic vapors is as follows: xylene < 

toluene < benzene. The values of diffusion coefficients for 

the graphene-based LB film sensors exhibit similar ordering 

with the responses (the change in the intensity of reflected 

light) of the same film agains to organic vapors (seen Table 

1). As reported in previous studies [24-26], this can be 

explained by differences in organic vapors' physical 
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properties, such as vapor pressure (at 20 °C) and molar 

volume.   

Since benzene molecules have the highest value of 

vapor pressure (9.95 kPa) with its the lowest value of molar 

volume (86.36 cm3 mol-1) when it is compared with other 

vapors, they introduce into the graphene-based chemical 

sensor film is easier and faster. The responses of this optical 

chemical sensor in terms of the change in photodetector 

response for toluene (2.91 kPa; 107.10 cm3 mol-1) and m-

xylene (0.80 kPa; 122.00 cm3 mol-1) are lower than benzene 

vapor because of these physical properties. It can be 

clarified with the vapor pressures of these VOCs, and it is 

well known that the higher vapor pressure leads to the 

bigger kinetic response [24]. In the light of these gas kinetic 

results, the other VOCs have higher values of molar volume 

can hardly diffuse into the graphene-based thin film in case 

they are compared with the diffusion of benzene vapor into 

the same thin film.  

 

3.2. NARX-ANN modeling results 
 

Performance and accuracy of NARX-ANN model is 

tested using real-time experimental measurements. NARX-

ANN is trained using randomly selected 70% of the 

experimental data and 15% of the data is used for 

validation. NARX-ANN is tested using remaining 15% of 

the data. Then, NARX-ANN model results are compared 

with experimental data and accuracy of the proposed ANN 

model output is analyzed using statistical calculations such 

as correlation coefficient, mean-squared error and standard 

deviation. 

Convergence of ANN model output to experimental 

data can be analyzed using Pearson’s correlation coefficient 

as follows: 

 

𝜌(𝑦, �̂�) =
1

𝑁 − 1
∑ (

𝑦𝑖 − 𝜇𝑦

𝜎𝑦

)

𝑁

𝑖=1

(
�̂�𝑖 − 𝜇�̂�

𝜎�̂�

) 

 

where 𝑦, �̂� are the experimental and NARX-ANN model 

outputs, respectively;  𝜇𝑦 and 𝜇�̂� are the mean values for 

measurement and ANN model output, 𝑁 correspond to the 

number of measurements;, and 𝜎𝑦, 𝜎�̂� are standard 

deviation values of experimental data and ANN model 

output, respectively. 𝜌(𝑦, �̂�) values close to “1” shows 

better fitting of model with experimental data.   

ANN modeling results for benzene is given in Fig. 8. 

Considering both ANN model output and experimental 

data, modeling error for benzene is satisfactorily small 

which also can be seen from correlation coefficient between 

ANN model output and experimental data. Correlation 

coefficient is calculated as 0.99979 which shows the good 

convergence of the ANN model data to experimental data. 

 

 
 

Fig. 8. ANN modeling results of benzene (color online) 

 

Fig. 9 represents the NARX-ANN model results and 

experimental measurements of toluene. As seen from the 

plots, designed ANN model output approximately overlaps 

with real measurements. Correlation coefficient for toluene 

is calculated as “0.99883” which is nearly equal to “1” as 

desired. 

 

 
 

Fig. 9. ANN modeling results of toluene (color online) 

 

Experimental data and NARX-ANN modeling results 

of xylene is given in Fig. 10. From Fig. 10, it is observed 

that correlation coefficient is 0.997 and modelling error for 

xylene is sufficiently small.  
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Fig. 10. ANN modeling results of xylene (color online) 

 

Diffusion coefficients of both NARX-ANN model data 

and experimental data for benzene, toluene and xylene are 

calculated to compare the consistency of the ANN model 

output with real time data. Diffusion coefficient calculation 

result of these materials are given in Table 1. 
 

Table 1. Diffusion coefficients of ANN model and  

experimental data 

 

Organic 

vapors 

The experimental value 

of D 

(cm2 s-1) × 10-15 

The NARX value 

of D 

(cm2 s-1) × 10-15 

Benzene  0.1954    0.1948   

Toluene 0.0696    0.0760    

Xylene 0.0197    0.0198      

 

Considering the diffusion coefficients of ANN model 

for these three organic vapors; diffusion coefficient values 

of ANN model are approximately equal to experimental 

data coefficients which exhibit the accuracy of the ANN 

model. 

Table 2 gives the mean-squared error and standard 

deviations for NARX-ANN modelling error as performance 

metrics. Table-2 shows that, mean-squared error and 

standard deviations for benzene, toluene and xylene are 

satisfactorily small. 
 

Table 2. ANN modeling error performance metrics 

 

Organic vapors   MSE(x10-6) Std. Dev. 

Benzene  1.7763  0.0013 

Toluene 3.8137 0.0020 

Xylene 2.0844  0.0014 

 
 
4. Conclusion 
 

The VOCs sensing abilities graphene-based optical 

sensor against trace vapor of aromatic BTX hydrocarbons 

were recorded in terms of the change in photodetector 

response or frequency of this sensor. Kinetic responses’ 

values for these VOCs were ordered as xylene < toluene < 

benzene, which was explained on the differences in the 

physical properties of VOCs. The swelling dynamic of the 

graphene optical sensor was illuminated with the 

development of the Fick’s diffusion equation to calculate 

the diffusion coefficients of aromatic BTX hydrocarbons. 

Moreover, the diffusion coefficients of values were also 

calculated by utilizing the designed NARX-ANN model to 

support the diffusion coefficients which were calculated 

with the Fick’s diffusion equation. The values of diffusion 

coefficients calculated with two different theoretical 

approaches verify that NARX-ANN fits experimental data 

with sufficiently small modelling errors. 

Hereby, graphene material can be developed as a 

sensing material and may find potential applications in the 

development of room temperature optical sensing devices. 
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