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1. Introduction 
 
Theory of solitons in optical fibers is a very rich 

area of research in the field of nonlinear optics. Optical 
soliton molecules are pulses that act as information 
carriers through optical fibers for trans-continental and 
trans-oceanic distances. We observe profound progress 
in the field of nonlinear optics [1-25]. For example, 
solitons in photonic crystal fibers, diffraction Bragg 
gratings, dispersion-managed solitons and quasi-linear 
pulses are a few of the latest advances. There exist still 
ongoing research activities in optical bullets, spatial 
solitons and spatio-temporal solitons. 

 In this work, the nonlinear Schrödinger’s equation 
(NLSE) which includes perturbation terms of certain 
types is examined. We investigate nine forms of 
nonlinear media and they are Kerr-law, power-law, 
quadratic-cubic law, parabolic-law, dual-power law, log-
law, anti-cubic law, cubic-quintic-septic law and triple-
power law nonlinearity. In order to integrate the 
perturbed NLSE for each type of nonlinearity, the trial 
equation method is employed. 

 The dimensionless form of the nonlinear 
Schrödinger equation (NLSE) is given by ([12]) 

 

 2
= 0t xxiq aq bF q q                 (1) 

where x  represents the non-dimensional distance along the 
fiber while, t  represents time in dimensionless form and a  

and b  are real valued constants. The dependent variable 
),( txq  is a complex valued function that represents the 

wave profile. The first term in this equation is temporal 
evolution, while the coefficient of a  is the group velocity 

dispersion (GVD). The coefficient of b  the source of 
nonlinearity. Solitos are the outcome of a delicate balance 

between GVD and nonlinearity. The function  2
F q q  

is a real-valued algebraic function and is k  times 
continuously differentiable, so that 
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In presence of perturbation terms, NLSE is modified to 
([2],[7],[18],[19])  
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where   is the inter-modal dispersion,   represents 
the coefficient of self-steepening for short pulses and   
is the higher-order dispersion coefficient. The parameter 
m  is the full nonlinearity parameter. 

 
 
2. Succinct overview of trial equation  
     method 
 
In this section we outline the main steps of the trial 

equation method as following ([1], [4]): 
Step-1: Suppose a nonlinear PDE with time-dependent 
coefficients 
 

  0=,...,,,,, xxxtttxt uuuuuuP                (3) 

 
can be converted to an ordinary differential equation 
(ODE) 

  0=,...,,, '''''' UUUUQ                    (4) 

 
using a travelling wave hypothesis ),( txu  =  )(U , 

vtx = , where )(= UU  is an unknown 

function, Q  is a polynomial in the variable U  and its 

derivatives. If all terms contain derivatives, then Eq.(4) 
is integrated where integration constants are considered 
zeros. 
Step-2: Take the trial equation 
 

   2

=0

= =
N

' l
l

l

U F U a U                 (5) 

 

where la , ( Nl 0,1,...,= ) are constants to be 

determined. Substituting Eq.(5) and other derivative 

terms such as ''U  or '''U  and so on into Eq.(4) yields a 

polynomial ( )G U  of U . According to the balance 

principle we can determine the value of N . Setting the 
coefficients of )(UG  to zero, we get a system of 

algebraic equations. Solving this system, we can 

determine v  and values of 0a , 1a , ..., Na . 

Step-3: Rewrite Eq.(5) by the integral form 
 

 
 UF

dU
 =0                       (6) 

 
According to the complete discrimination system of 

the polynomial, we classify the roots of )(UF , and 

solve the integral Eq.(6). Thus we obtain the exact 
solutions to Eq.(3). 

 
3. Soliton solutions 
 
In order to solve Eq.(2) by the trial equation 

method, we use the following wave transformation 

( , )( , ) = ( ) i x tq x t U e                             (7) 

 
where )(U  represents the shape of the pulse, vtx =  

and = x t      . The function ( , )x t  is the 

phase component of the soliton,   is the soliton frequency, 
while   is the wave number,   is the phase constant and 
v  is the velocity of the soliton. 

 Substituting Eq.(7) into Eq.(2) and then decomposing 
into real and imaginary parts yields a pair of relations ([2]). 
The imaginary part gives 

 

   22 2 1 2 = 0mv a m m U               (8) 

 
while the real part gives 
 

 2

2 1 2( ) = 0

''

m

aU a U

U b F U U

  

 

   


                    (9) 

 
The imaginary part equation implies  
 

  av 2=                             (10) 
 

and  
0=21)(2  mm                     (11) 

 
Eq.(10) gives the velocity of the soliton and Eq.(11) gives 
the constraint relation between the two perturbation terms, 
while Eq.(9) can be integrated to determine the soliton 
profile. This form for the velocity remains the same for all 
types of nonlinearity, )(sF . 

 
 
3.1. Kerr - law   
 
The Kerr-law of nonlinearity originates from the fact 

that a light wave in an optical fiber faces nonlinear responses 
from nonharmonic motion of electrons bound in molecules, 
caused by an external electric field. As a result the induced 
polarization is not linear in the electric field, but involves 
higher order terms in electric field amplitude. Even though 
the nonlinear responses are extremely weak, their effects 
appear in various ways over long distance propagation that is 
measured in terms of light wavelength ([2]). 

  
 For Kerr-law nonlinearity 

 
ssF =)(                                 (12) 

 
so that Eq.(2) reduces to 
 

   
2

2 2

=t xx

m m

x
x x

iq aq b q q

i q q q q q  

 

    

        (13) 



Optical soliton perturbation with full nonlinearity in polarization preserving fibers using trial equation method           387 
 
and Eq.(9) simplifies to 
 

 2

2 1 3 = 0

''

m

aU a U

U bU

   

 

   


           (14) 

 

Balancing ''U  with 12 mU  in Eq.(14), then we get 

22= mN . Using the solution procedure of the trial 
equation method, we obtain the system of algebraic 
equations as follows: 

 
12 mU  Coeff.: 

 

0,=1)( 22  mama  

 
3U  Coeff.: 

 

0,=2 4 baa   

 
2U  Coeff.: 

 

0,=3aa  

 
1U  Coeff.: 

 

0,=2
2  aaa   

 
0U  Coeff.: 
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Solving the above system leads to 
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and also apparent coefficients from Eq.(14) 
 

0==...== 1265 maaa  

 

where 0a ,  ,  ,  , a , b ,   are arbitrary 

constants. 
Substituting these results into Eqs.(5) and (6), we 

get 
 0

2
2 4 2 2
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a U U U
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 (15) 

 

In order to carry out the integration of Eq.(15) it is necessary 
to choose 1=m . Thus, with 1=m , new Eq.(15) is 
following: 
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Case 1 

If we set 0=0a  in Eq.(16) and integrating with respect 

to U , we get the following exact solution of Eq.(13): 
 

   

   

2

2

2
, =

,i x t

a
q x t

b

a
sech x vt e

a
  

   



      

 



  

 
  

     (17) 

 

   

   

2

2

2
, =

,i x t

a
q x t

b

a
csch x vt e

a
  

   



      

 



  

 
  

      (18) 

 
where Eq.(17) and Eq.(18) represent bright and singular 
soliton solutions respectively. These solitons are valid for 
 

  0.>2 aa   
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where Eq.(19) and Eq.(20) represent singular periodic 
solutions. These solutions are valid for 
 

  0.<2 aa   

Case 2 

If we set 
 

 

22

0 =
2

a
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 in Eq.(16) and 

integrating with resect to U , we get the following exact 
solution of Eq.(13): 



388   Anjan Biswas, Yakup Yildirim, Emrullah Yasar, Houria Triki, Qin Zhou, Seithuti P. Moshokoa, Malik Zaka Ullah, Milivoj Belic 
 

 

   

2

2

, =

tan ,
2

i x t

a
q x t

b

a
x vt e

a
  

  


     

 



  

 
  

  (21) 

 

 

   

2

2

, =

cot ,
2

i x t

a
q x t

b

a
x vt e

a
  

  


     

 



  

 
  

 (22) 

 
where Eq.(21) and Eq.(22) represent singular periodic 
solutions. These solutions are valid for 
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where Eq.(23) and Eq.(24) represent dark and singular 
soliton solutions respectively. These solitons are valid 
for 
 

  0.<2 aa   

 
 
3.2. Power - law   
 
The power-law nonlinearity is exhibited in various 

materials including semiconductors. This law also 
occurs in media for which higher-order photon processes 
dominate at different intensities. Moreover, in nonlinear 
plasmas, the power-law solves the problem of small- K  
condensation in weak turbulence theory. This law is also 
treated as a generalization to the Kerr-law nonlinearity 
([2]). 

  For power-law nonlinearity 
 

nssF =)(                                (25) 

 
so that Eq.(2) collapses to 

    qqqqqiqqbaqiq
x

m

x

m

x

n
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=    (26) 

 
The parameter n  is in the range 2<<0 n , and in 

particular 2n  since this case leads to a self-focusing 
singularity. In this case, Eq.(9) simplifies to 
 

  0=12122   nm'' bUUUaaU   (27) 

 
To obtain an analytic solution, we use the 

transformation 

U  =  nV 2

1

 in Eq.(27) to find 
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Balancing ''VV  or  2'V  with 
2

n

m

V  in Eq.(28), then we 

get 2= 
n

m
N . Using the solution procedure of the trial 

equation method, we obtain the system of algebraic 
equations as follows: 
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and also apparent coefficients from Eq.(28) 
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where  ,  ,  , a , b ,   are arbitrary constants. 
  

 Substituting these results into Eqs.(5) and (6), we 
have 
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Case 1 

For nm = , Eq.(29) reduces to 
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Integrating Eq.(30), we obtain the exact solutions of 
Eq.(26) as follows: 
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where Eq.(31) and Eq.(32) represent bright and singular 
soliton solutions respectively. These solitons are valid 
for 
 

  0.>2 aa   
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where Eq.(33) and Eq.(34) represent singular periodic 
solutions. These solutions are valid for 
 

  0.<2 aa   

Case 2 
For nm 2= , Eq.(29) reduces to 
 

 

 

0

2 2 2 2
2 3 4

=

4 4 4
(1 ) (2 1)

dV

n a n b n
V V V

a a n a n

 

   

 

 
 

 

     (35) 

 
Eq.(35) can be integrated with respect to V  if we set 
 

 
 2

2
2

14

12
=





n

bn
a


  

 
Thus, we obtain exact solutions of Eq.(26): 
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where Eq.(36) and Eq.(37) represent dark and singular 
soliton solutions respectively. These solitons are valid for 
 

0.>a  
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3.3  Quadratic-Cubic Law 
 
 
This nonlinearity first appeared in 2011 ([3]). The 

general form can be written as  
 

sbsbsF 21=)(   

 

where 1b  and 2b  are constants. The governing NLSE 

therefore is:  
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In this case, Eq.(9) simplifies to 
 

  0=3
2

2
1

122 UbUbUUaaU m''   (39) 

 

Balancing ''U  with 12 mU  in Eq.(39), then we get 

22= mN . Using the solution procedure of the trial 
equation method, we obtain the system of algebraic 
equations as follows: 
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Solving the above system leads to 
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and also apparent coefficients from Eq.(39) 
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where 0a ,  ,  ,  , a , 1b , 2b ,   are arbitrary 

constants. 

  
 Substituting these results into Eqs.(5) and (6), we get 
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In order to carry out the integration of Eq.(40) it is necessary 
to choose 1=m . Thus, with 1=m , new Eq.(40) is 
following: 
 

 0

2
2 3 41 2

0

=

2

3 2

dU

b ba
a U U U

a a a

 

  

 

         
  

   (41) 

 
Case 1 

Eq.(41) can be integrated with respect to U  if we 
set 
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Thus, we obtain exact solutions of Eq.(38): 
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where Eq.(42) and Eq.(43) represent dark and singular 
soliton solution respectively. These solitons are valid for 
 

  0.>2ba   

 
Case 2 

Eq.(41) can be integrated with respect to U  if we set 

=0,= 20 ba  
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Thus, we obtain exact solutions of Eq.(38): 
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where Eq.(44) and Eq.(45) represent bright and singular 
soliton solutions respectively. These solitons are valid 
for 
 

  0.>2 aa   
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where Eq.(46) and Eq.(47) represent singular periodic 
solutions. These solutions are valid for 
 

  0.<2 aa   

 
 
3.4. Parabolic-Law 
 
The collapse of two-and three-dimensional optical 

beams in a Kerr-law medium was considered as a means 
of producing high electric field strengths. It was 
observed that the inclusion of a saturable nonlinearity 
could halt the singular collapse, thus causing the 
formation of an optical beam that propagates without 
changing its temporal or spatial shape, being held 
together by nonlinear effects. Therefore, it is of interest 
to consider nonlinearities higher than the third-order to 
obtain some knowledge of the diameter of the self-
trapped beam. There was little or no attention paid to the 
propagation of optical beams in the fifth-order nonlinear 
media, since no analytic solutions existed and it seemed 
that the chances of finding any material with significant 

fifth-order effects were low. However, recent new results 
have reignited interest in this area ([2]). 

  
 For parabolic-law nonlinearity, 

 
2
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where 3b  and 4b  are constants. Therefore, Eq.(2) takes the 

form 
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In this case, Eq.(9) simplifies to 
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Balancing ''VV  or  2'V  with 2mV  in Eq.(51), then we 

get 2= mN . Using the solution procedure of the trial 
equation method, we obtain the system of algebraic 
equations as follows: 
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Solving the above system leads to 
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where 1a ,  ,  ,  , a , 3b , 4b ,   are arbitrary 

constants. 
  

 Substituting these results into Eqs.(5) and (6), we 
get 
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For 1,=m  Eq.(52) reduces to 
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Case 1.1 
Eq.(53) can be integrated with respect to V  if we 
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Thus, we obtain exact solutions of Eq.(49): 

 

   

   

 

3

4

1

22

3

4

3
, =

8

3
1 tanh

16

,i x t

b
q x t

b

b
x vt

ab

e   





  



       
    

        (54) 

 

   

   

 

3

4

1

22

3

4

3
, =

8

3
1 coth

16

,i x t

b
q x t

b

b
x vt

ab

e   





  



       
    

         (55) 

where Eq.(54) and Eq.(55) represent dark and singular 
soliton solution respectively. These solitons are valid for 
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Case 1.2 
Eq.(53) can be integrated with respect to V  if we set 
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Thus, we obtain exact solutions of Eq.(49): 
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where Eq.(56) and Eq.(57) represent bright and singular 
soliton solutions respectively. These solitons are valid for 
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(59) 

where Eq.(58) and Eq.(59) represent singular periodic 
solutions. These solutions are valid for 
 

  0.<2 aa   

Case 2 
For 2,=m  Eq.(52) reduces to 
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Case 2.1 

Eq.(60) can be integrated with respect to V  if we 
set 
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2
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3
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b
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Thus, we obtain exact solutions of Eq.(49): 
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where Eq.(61) and Eq.(62) represent dark and singular 
soliton solution respectively. These solitons are valid for 

  0.>4ba   

 
Case 2.2 

Eq.(60) can be integrated with respect to V  if we 
set 

=0,= 41 ba  

Thus, we obtain exact solutions of Eq.(49): 
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where Eq.(63) and Eq.(64) represent bright and singular 
soliton solutions respectively. These solitons are valid for 
 

  0.>2 aa   
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(66) 

where Eq.(65) and Eq.(66) represent singular periodic 
solutions. These solutions are valid for 
 

  0.<2 aa   

 
3.5.  Dual-Power Law 
 
This model is used to describe the saturation of the 

nonlinear refractive index. Also, this serves as a basic model 



394   Anjan Biswas, Yakup Yildirim, Emrullah Yasar, Houria Triki, Qin Zhou, Seithuti P. Moshokoa, Malik Zaka Ullah, Milivoj Belic 
 
to describe the solitons in photovoltaic-photorefractive 
materials such as LiNbO3 ([2]). 

  For dual-power law nonlinearity, 
 

nn sbsbsF 2
65=)(                    (67) 

where 5b  and 6b  are constants. Therefore, Eq.(2) 

reduces to 
 

 
   

2 4
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In this case, Eq.(9) simplifies to 
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By using transformation nVU 2
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= , Eq.(69) becomes 
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Balancing ''VV  or  2'V  with 
2

n

m

V  in Eq.(70), then 

we get 2= 
n

m
N . Using the solution procedure of 

the trial equation method, we obtain the system of 
algebraic equations as follows: 
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Solving the above system leads to 
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and also apparent coefficients from Eq.(70) 
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where  ,  ,  , a , 5b , 6b ,   are arbitrary constants. 

  
Substituting these results into Eqs.(5) and (6), we get 
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Case 1 
 

For ,= nm  Eq.(71) reduces to 
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Case 1.1 
 

Eq.(72) can be integrated with respect to V  if we set 
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2
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=

bn
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Thus, we obtain exact solutions of Eq.(68): 
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where Eq.(73) and Eq.(74) represent dark and singular 
soliton solution respectively. These solitons are valid for 
 

0.<6ab  

 
Case 1.2 
 

Eq.(72) can be integrated with respect to V  if we 
set 

=5b  

 
Thus, we obtain exact solutions of Eq.(68): 
 

 

 

 

 
 

1

22

6

2 2

(2 1)

, = 4

,

n

i x t

n a

b

q x t n a
sech a

x vt

e   

  

  

  

   
 
 
 

    
  
  
    

(75) 

 

 

 

 

 
 

1

22

6

2 2

(2 1)

, = 4

,

n

i x t

n a

b

q x t n a
csch a

x vt

e   

  

  

  

    
 
 

      
  
    

(76) 

where Eq.(75) and Eq.(76) represent bright and singular 
soliton solutions respectively. These solitons are valid for 
 

  0.>2 aa   
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where Eq.(77) and Eq.(78) represent singular periodic 
solutions. These solutions are valid for 
 

  0.<2 aa   

 
Case 2 

For ,2= nm  Eq.(71) reduces to 
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Case 2.1 

Eq.(79) can be integrated with respect to V  if we set 

 
   6

2

2
52

14

12
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Thus, we obtain exact solutions of Eq.(68): 
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where Eq.(80) and Eq.(81) represent dark and singular 
soliton solution respectively. These solitons are valid for 
 

  0.>6ba   

Case 2.2 
 

Eq.(79) can be integrated with respect to V  if we 
set 

=6b  

 
Thus, we obtain exact solutions of Eq.(68): 
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where Eq.(82) and Eq.(83) represent bright and singular 
soliton solutions respectively. These solitons are valid for 
 

  0.>2 aa   
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where Eq.(84) and Eq.(85) represent singular periodic 
solutions. These solutions are valid for 
 

  0.<2 aa   

 
 
 

3.6.  Log – Law 
 
This log-law nonlinearity arises in various fields of 

contemporary physics. It allows closed form exact 
expressions for stationary Gaussian beams (Gaussons) as 
well as for periodic and quasiperiodic regimes of the beam 
evolution. The advantage of this model is that the radiation 
from the periodic soliton is absent as the linearized problem 
has a discrete spectrum only ([2]). 

  For case of log-law nonlinearity, 
 

ssF ln=)(                              (86) 

 
so that Eq.(2) collapses to 
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m m

x
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In this case, Eq.(9) simplifies to 
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 2

2 1 2 ln = 0
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              (88) 

 
To obtain an analytic solution, we use the transformation 

VeU =  in Eq.(88) to find 
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2 2 2 = 0
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mV

a V V

a e bV

 

 

   

 
                  (89) 

 
In order to carry out the balancing procedure in Eq.(89), 
it is helpful to set 0= . This indicates that the 
perturbed NLSE with log-law nonlinearity can be 
integrated only when the self- steepening term is not 
present. In this case the perturbed NLSE is given by 
 

  qqqiqqbaqiq
x

m

xxxt

2
=ln2       (90) 

 
and Eq.(89) reduces to 
 

   0=222
bVaVVa '''       (91) 

 

Balancing  2'V  with V  in Eq.(91), then we get 

1=N . Using the solution procedure of the trial 
equation method, we obtain the system of algebraic 
equations as follows: 
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Solving the above system leads to 
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where  ,  ,  , a , b  are arbitrary constants. 
  

 Substituting these results into Eqs.(5) and (6), we 
get 
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(92) 
 
Integrating Eq.(92), we obtain the exact Gausson 
solutions of Eq.(90) as  

     txivtxB eAetxq
2)(2

=,              (93) 

 
where the amplitude A  and the inverse width B  are  
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2
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and  

a

b
B

2
=                                      (95) 

 
Naturally, the width of the Gausson proposes the restriction  
 

0.>ab  
 

This shows that the nonlinearity and GVD must bear the 
same sign for the existence of Gaussons. 

 
 
3.7. Anti-Cubic Law 
 
This anti-cubic (AC) law first appeared during 2003 

([8], [9], [11], [14]). Later, a lot of developments were made 
and results were reported. In this case,  

 

2
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s

b
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where 7b , 8b  and 9b  are all constants. Therefore NLSE 

with AC nonlinearity is given by  
 

 
   

4 2 4

7 8 9

2 2

=

.

t xx

m m

x
x x

iq aq b q b q b q q

i q q q q q  

   

    

(96) 

 
In this case, Eq.(9) simplifies to 
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By using transformation 2

1

= VU , Eq.(97) becomes 
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  (98) 

 

Balancing ''VV  or  2'V  with 2mV  in Eq.(98), then we 

get 2= mN . Using the solution procedure of the trial 
equation method, we obtain the system of algebraic 
equations as follows: 
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Solving the above system leads to 

 

 2

7
0 2

8 9
3 4 2

44
= , = ,

2 4 4
= , = , =

3 ( 1)m

ab
a a

a a
b b

a a a
a a a m

  




 

 


 

 
and also apparent coefficients from Eq.(98) 
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where 1a ,  ,  ,  , a , 7b , 8b , 9b ,   are arbitrary 

constants. 
  

Substituting these results into Eqs.(5) and (6), we 
get 
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To carry out the integration of Eq.(99) requires that 

1=m . Thus, with 1=m , new Eq.(99) is following: 
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Eq.(100) can be integrated with respect to V  if we set 
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Thus, we obtain exact solutions of Eq.(96): 
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where Eq.(101) and Eq.(102) represent singular periodic 
solutions. These solutions are valid for 
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where Eq.(103) and Eq.(104) represent dark and singular 
soliton solution respectively. These solitons are valid for 
 

  0.<2 aa   

 
 

3.8. Cubic-Quintic-Septic Law 
 
This is an extension of parabolic law nonlinearity 

([5], [6], [17]). This type of nonlinear optical medium 
takes the form 
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where 10b , 11b  and 12b  are all constants. Therefore 

NLSE is given by  
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In this case, Eq.(9) simplifies to 
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By using transformation 2
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= VU , Eq.(106) becomes 
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Balancing ''VV  or  2'V  with 2mV  in Eq.(107), then 

we get 2= mN . Using the solution procedure of the 
trial equation method, we obtain the system of algebraic 
equations as follows: 
 

2mV  Coeff.: 

0,=1)(4 2 mama  
5V  Coeff.: 

0,=512 aab   
4V  Coeff.: 

0,=34 411 aab   
3V  Coeff.: 

0,=2 310 aab   
2V  Coeff.: 

  0,=4 2
2 aaa    

0V  Coeff.: 

0.=0aa  

 
Solving the above system leads to 
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where 1a ,  ,  ,  , a , 10b , 11b , 12b ,   are arbitrary 

constants. 
we get 
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To carry out the integration of Eq.(108) requires that 
3=m . Thus, with 3=m , new Eq.(108) is following: 
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Eq.(109) can be integrated with respect to V  if we set 
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Thus, we obtain exact solutions of Eq.(105): 
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where Eq.(110) and Eq.(111) represent dark and singular 
soliton solution respectively. These solitons are valid for 
 

  0.>2 aa   

 
3.9. Triple-Power Law  
 
This is a generalization of cubic-quintic-septic law 

nonlinearity and an extension of dual-power law 
nonlinearity ([5], [6], [17]). In this case, 
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where 13b , 14b  and 15b  are all constants. Therefore 

NLSE is given by  
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In this case, Eq.(9) simplifies to 
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By using transformation nVU 2
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= , Eq.(113) becomes 
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Balancing ''VV  or  2'V  with 2mV  in Eq.(114), then 

we get 2= 
n

m
N . Using the solution procedure of 

the trial equation method, we obtain the system of 
algebraic equations as follows: 
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Solving the above system leads to 
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where  ,  ,  , a , 13b , 14b , 15b ,   are arbitrary 

constants. 
  
 we get 
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To carry out the integration of Eq.(115) requires that 

nm 3= . Thus, with nm 3= , new Eq.(115) is following: 
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Eq.(116) can be integrated with respect to V  if we set 
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Thus, we obtain exact solutions of Eq.(112 
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where Eq.(118) and Eq.(119) represent dark and singular 
soliton respectively and they are valid for 
 

  0.>2 aa                      (120) 

 
 
4. Conclusions 
 
In this paper, optical solitons are studied in the 

presence of perturbed nonlinear Schrödinger’s equation 
with nine types of nonlinear fibers which are Kerr, 
power, quadratic-cubic, parabolic, dual-power, log, anti-
cubic, cubic-quintic-septic and triple-power law 
nonlinearity. Bright, dark and singular solitons are 
yielded by the trial equation method along with 
necessary constraint conditions that guaranteed the 
existence of such solitons. On the flip side, singular 
periodic solutions emerged with reverse form of the 
constraints. 
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