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This paper studies optical soliton perturbation by modified simple equation method. The spatio-temporal dispersion term is 
included, in addition to group velocity dispersion. There are four types of nonlear media that are addressed. These are Kerr,  
power, parabolic and dual-power law. This scheme only reveals topological and singular optical solitons. 
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1. Introduction 
 

Optical soliton perturbation is a core area of 

research in the field of nonlinear optics. There are 

various aspects in this topic that are touched upon by 

several scientists across the globe [1-12]. A few such 

issues are soliton perturbation theory, quasi-stationary 

solutions [3], quasi-patrticle theory, optical soliton 

cooling. This paper is going to take up the study of 

integrability of the model, namely the perturbed 

nonlinear Schrödinger's equation (NLSE). There are a 

variety of integration schemes that are applied to study 

the model in order to extract soliton and shock wave 

solutions. Some of these algorithms are traveling wave 

hypothesis, method of undetermined coefficients, semi-

inverse variational principle, 𝐺′/𝐺-expansion, Lie 

symmetry [6], extended Kudryashov's method [11] and 

countless others. This paper adopted the modified simple 

equation approach to secure soliton solutions to the 

perturbed NLSE. This will only reveal topological and 

singular soliton solutions to the model. Bright soliton 

solutions cannot be recovered with this integration tool. 

Such is the limitation to this scheme. There are four 

types of nonlinear media that are studied in this paper. 

They are Kerr law, power law, parabolic law and dual-

power law. 

 

 

 

 

2. The modified simple equation method 
 

Suppose we have a nonlinear evolution equation in the 

form  

𝑃(𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑥𝑥, 𝑢𝑡𝑡 , 𝑢𝑡𝑥, . . . ) = 0, (1) 

 

 where 𝑃 is a polynomial in 𝑢(𝑥,𝑡) and its partial 

derivatives in which the highest order derivatives and 

nonlinear terms are involved. In the following, we give the 

main steps of this method [11, 10, 2]. 

Step-1: We use the transformation  

 

𝑢(𝑥, 𝑡) = 𝑢(𝜉),   𝜉 = 𝑥 − 𝑐𝑡,                            (2) 

 

 where 𝑐 is a constant to be determined, to reduce Eq. (1) to  

the following ODE :  

 

𝑄(𝑢, 𝑢′, 𝑢′′, . . . ) = 0,                                        (3) 

 

 where 𝑄 is a polynomial in 𝑢(𝜉) and its total derivatives, 

while  ′ =
𝑑

𝑑𝜉
. 

 

Step-2: We suppose that Eq. (3) has the formal solution.  

 

𝑢(𝜉) = ∑  𝑁
𝑙=0 𝑎𝑙 (

𝜓′(𝜉)

𝜓(𝜉)
)

𝑙

,                      (4) 
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 where 𝑎𝑙  are constants to be determined, such that 

𝑎𝑁 ≠ 0, and 𝜓(𝜉) is an unknown function to be 

determined later. 

 

Step-3: We determine the positive integer 𝑁 in Eq. (4) 

by considering the homogeneous balance between the 

highest order derivatives and the nonlinear terms in Eq. 

(3). 

 

Step-4: We substitute (4) into (3), then we calculate all 

the necessary derivatives 𝑢′, 𝑢′′, . .. of the unknown 

function 𝑢(𝜉) and we account the function 𝜓(𝜉). As a 

result of this substitution, we get a polynomial of 

𝜓′(𝜉)/𝜓(𝜉)and its derivatives. In this polynomial, we 

gather all the terms of the same power of 

( ), 0,1,2,...j j    and its  derivatives, and we 

equate with zero all the coefficients of this polynomial. 

This operation yields a system of equations which can be 

solved to find 𝑎𝑘and 𝜓(𝜉). Consequently, we can get 

the exact solutions of Eq. (1) . 

 

3. Application to NLSE 
 

The dimensionless form of the improved perturbed 

NLSE is given by [1, 2]  

 

 

    

2

2 2
, (5)

t tx xx

m m

x
x x

iq aq bq cF q q

i q q q q q  

   

 

 

 In (5), the two independent variables are 𝑥 and 𝑡 

which represent the spatial and temporal variables 

respectively. The dependent variable 𝑞(𝑥,𝑡) is the 

soliton pulse profile. The first term is the linear 

evolution term while the coefficients of 𝑎 and 𝑏 

accounts for the dispersion term where the coefficient of 

a represents the improved term that introduces stability 

to the NLSE which is otherwise an ill-posed problem. 

The coefficient of 𝑏 is the usual group velocity 

dispersion. From the perturbation terms on the right 

hand side, the coefficient of 𝛼 is the inter-modal 

dispersion, while 𝜆 is the self-steepening perturbation 

term and finally   is the nonlinear dispersion 

coefficient. The parameter 𝑚 is the full nonlinearity 

factor that is studied on a generalized setting. These 

perturbation terms are all of Hamiltonian type and hence 

the perturbed NLSE given by (5) makes it integrable.  

 

In Eq. (5), 𝐹 is a real-valued algebraic function and 

it is necessary to have the smoothness of the complex 

function 𝐹(|𝑞|2)𝑞: 𝐶 ↦ 𝐶. Considering the complex 

plane 𝐶 as a two-dimensional linear space 𝑅2, the 

function 𝐹(|𝑞|2)𝑞 is 𝑘 times continuously 

differentiable, so that  

𝐹(|𝑞|2)𝑞 ∈ ⋃  ∞
𝑚,𝑛=1 𝐶 𝑘((−𝑛,𝑛) × (−𝑚, 𝑚); 𝑅2).   (6) 

 

In order to solve Eq. (5), we use the following wave 

transformation  

 

𝑞(𝑥, 𝑡) = 𝑈(𝜉)𝑒𝑖Φ(𝑥,𝑡)
                             (7) 

 

where 𝑈(𝜉) represents the shape of the pulse and  

 

𝜉 = 𝑘(𝑥 − 𝑣𝑡),                                           (8) 

  

Φ(𝑥,𝑡) = −𝜅𝑥 + 𝜔𝑡 + 𝜃.                       (9) 

 

 In Eq. (7), the function Φ(𝑥, 𝑡) is the phase 

component of the soliton. Then, in Eq. (9), 𝜅 is the soliton 

frequency, while 𝜔 is the wave number of the soliton and 𝜃 

is the phase constant. Finally in Eq. (8), 𝑣 is the velocity of 

the soliton. Substituting Eq. (7) into Eq. (5) and then 

decomposing into real and imaginary parts yields a pair of 

relations. The imaginary part gives  

 

𝑣 =
𝑎𝜔−2𝑏𝜅−𝛼

1−𝑎𝜅
,                                  (10) 

 

 while the real part gives  

 

   

 

2 2

2 1 2  0.m

k b av U a b U

U c F U U

   







     

 
    (11) 

 

 The relation Eq. (10) gives the velocity of the soliton in 

terms of the wave number while Eq. (11) can be integrated 

to compute the soliton profile provided the functional is 

known.  

 
3.1. Kerr law nonlinearity 

 

The Kerr law nonlinearity is the case when 𝐹(𝑠) = 𝑠. 
For Kerr law nonlinear medium, 𝑚 = 1 in order for Eq. (5) 

to be integrable. Thus, (5) reduces to  

 

    

2

2 2
,

t tx xx

x
x x

iq aq bq c q q

i q q q q q  

   

 
 (12) 

 

 and Eq. (11) simplifies to  

 

   2 2

3( ) 0.

k b av U a b U

c U

   



     

 
  (13) 

 

Balancing 𝑈′′
 with 𝑈3

 in Eq. (13) gives 𝑁 = 1.  
Consequently we reach  

𝑈(𝜉) = 𝑎0 + 𝑎1 (
𝜓′ (𝜉)

𝜓 (𝜉)
) , 𝑎1 ≠ 0.            (14) 
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Substituting Eq. (14) in Eq. (13) and then setting the 

coefficients of 𝜓−𝑗(𝜉), 𝑗 = 0,1,2,3, to zero, then we 

obtain a set of algebraic equations involving 𝑎0, 𝑎1, 𝑘, 

𝜅, 𝑣 and 𝜔 as follows: 

 

𝜓−3
 coeff.:  

 

   
3 2 2

1 12 ( ) ( ) 0,a k b av a c            (15) 

 

 𝜓−2
 coeff.:  

 

3𝑎1𝜓′(𝑘2𝜓′′(𝑎𝑣 − 𝑏) + 𝑎0 𝑎1𝜓′(𝑐 − 𝜅𝜆)) = 0,        (16) 

 

 𝜓−1
 coeff.:  

 

2

0

2
1

2 (3)

3 ( )

0,

( )

a c a

a b

k av b

  


 



      
      

 
  

   (17) 

 

 𝜓0
 coeff.:  

 

2

0

0 2

( )
0.

a c a
a

b

 

  

   
     

           (18) 

 

 Solving this system, we obtain  

2

0

2

1

,  

2 ( )
.

a b
a

c

k b av
a

c

   





   
 




 



         (19) 

 and  

𝜓′′ = √−
2(−𝑎𝜅𝜔+𝛼𝜅 +𝑏𝜅2+𝜔)

𝑘2 (𝑏−𝑎𝑣)
𝜓′ ,          (20) 

 

 

𝜓′′′ = −
2(−𝑎𝜅𝜔+𝛼𝜅+𝑏 𝜅2+𝜔)

𝑘2(𝑏−𝑎𝑣)
𝜓′ .              (21) 

 

From Eqs. (20) and (21), we can deduce that  

 

 
 2

2

2

2

2

( )

1

( )

2

,

a b

k b av

k b av

a b

k e

   



   



   





 

                 (22) 

 and  

 
 2

2

2

2

2

( )

1 2

( )

2

,

a b

k b av

k b av

a b

k e k

   



   

   





 

   



             (23) 

 

where 𝑘1 and 𝑘2 are constants of integration. Substituting 

Eq. (22) and Eq. (23) into Eq. (14), we obtain following the 

following exact solution to Eq. (12)  

 

 

 
 

 

 

 

2

2

2

2

2

2

2

2

( )

1

2
2

( )

12

2

( )

( )

( , )

( )

2

.

a b

k b av

a b

k b av

i x t

a b

c

k b av

c a b

q x t

k e

k b av
k e

a b

k

e

   


   


  

   



    

   

   




   




  

    
 

 
 
 
     
  

  
 
 
 

 
    
 
  



(24) 

  

If we set  

 

 2

02

2

1 2

2

( )

2

2( )

( )

,    1,

a b

k b av

a b
k

k b av

e k

   


   

   




   
 



 

 

 

we obtain: 

 

(i) When  

 

(−𝑎𝜅𝜔 + 𝛼𝜅 + 𝑏𝜅2 + 𝜔)(𝑎𝑣 − 𝑏) > 0, 
 

we have  

 

 

 
   

2

2

02

( , )  tanh

( )
2

i x t

a b
q x t

c

a b
k x vt e

k av b

  

   



   


  

   
 



    
   

  

     (25) 

  

  

 
   

2

2

02

( , )  coth

( ) ,
2

i x t

a b
q x t

c

a b
k x vt e

k av b

  

   



   


  

   
 



    
   

  

 (26) 
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where (25) and (26) represent dark soliton and singular 

soliton solutions. 

 

(ii) When  

 

(−𝑎𝜅𝜔 + 𝛼𝜅 + 𝑏𝜅2 + 𝜔)(𝑎𝑣 − 𝑏) < 0, 
 

we have the following periodic singular solutions:  

 

 
 

 

2

2

02

( , )  tan

( )
2

,
i x t

a b
q x t

c

a b
k x vt

k av b

e
  

   



   


  

   
  



    
   

  



    (27) 

 

 
 

 

2

2

02

( , )  

cot ( )
2

,
i x t

a b
q x t

c

a b
k x vt

k av b

e
  

   



   


  

   
 



    
   

  



  (28) 

 

 where 𝑣 is given by Eq. (10) and 𝜔 is an arbitrary 

constant. 

 

3.2  Power law nonlinearity 

 

The power law nonlinearity is the case when 

( ) .nF s s  For Power law nonlinearity, m n  in 

order for Eq. (5) to be integrable. Thus, (5) reduces to  

 

   

2

2 2 ,

n

t tx xx

x

n n

x x

iq aq bq c q q

q

i
q q q q



 

   

 
 
 

  

          (29) 

 

 and Eq. (11) simplifies to  

 

   2 2

2 1( ) 0.n

k b av U a b U

c U

   







     

 

 (30) 

 

Set  
1

nU V                                         (31) 

 

so that (30) transforms to  

 

  
 

22

2 2 2 2 4

( ) (1 )

( ) 0.

k b av nVV n V

n a b V n V c    

    

     

    (32) 

 

Balancing V V 
with 

4V  in Eq. (32) gives 1.N   

Consequently we reach  

 

0 1 1

( )
( ) ,    0.

( )
V a a a

 


 

 
   

 
                       (33) 

 

Substituting Eq. (33) in Eq. (32) and then setting the 

coefficients of ( ),   0,1,2,3,j j   to zero, then we 

obtain a set of algebraic equations involving 

0 1, , , ,a a k v and   as follows: 

 
4 

coeff.:  

 

   
42 2 2 2

1 1( 1)( ) ( ) 0,a k n b av a n c         (34) 

 

 
3 

coeff.:  

 

 
 2 2

2 0 1

1
2

1

2 ( ) 2 ( )
0,

( 2) ( )

a n k b av a n c
a

a k n b av

 




     
   

   

     (35) 

 

 
2 

 coeff.:  

 

 

 

 

22 2 2

1 0 1

2 2

0

22

2

1
2 2 (3)

1

3 ( )

6 ( )

( 1) ( )
0,

( )

a a k n b av a n

a c a b

k n b av
a

a k n av b

  

    



 

    

      

   
  
   

         (36) 

  

  
1 

coeff.:  

 

 2 2

0

0 1
2 (3)

2 2 ( )
( ) 0,

( )

n a c a b
a a n

k av b

     



       
  
   

  (37) 

 

  
0 coeff.:  

 

  2 2 2 2

0 0 ( ) 0.a n a c a b           (38) 

  

Solving this system, we obtain  

 

0 1 2

( 1)( )
0,   .

( )

n b av
a a k

n c 

 
   


                    (39) 

and 

 

0,                                                                       (40) 
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 2

2
.

( )

n a b

k b av

   
  

   



          (41) 

 

Eqs. (40) and (41) give a trivial solution. This leads 

to recapitulation of a well known fact. Power law 

nonlinearity does not support topological solitons ot 

singular solitons of this type unless the nonlinearity 

collapses to Kerr type [4]. 

 

3.3 Parabolic law nonlinearity 

 

The parabolic law nonlinearity is the case when 
2( )     .F s s s    For Parabolic law nonlinearity, 

1m   in order for Eq. (5) to be integrable. Thus, (5) 

reduces to                      

 

 

    

2 4

1 2

2 2
,

t tx xx

x
x x

iq aq bq c q c q q

i q q q q q  

    

 

              (42) 

 

 and Eq. (11) simplifies to  

 

   2 2

3 5

1 2( ) 0,

k b av U a b U

c U c U

   



    

   

         (43) 

 

 where 1 2  ,   .c c c c     Set  

 
1

2U V                                             (44) 

 

 so that (43) transforms to  

 

  
 

 

22

2 2

3 4

1 2

( ) 2

4

4 4 0.

k b av VV V

a b V

c V c V

   



  

    

   

                  (45) 

 

Balancing V V 
 with 

4V in Eq. (45) gives 1.N   

Consequently we reach  

 

0 1 1

( )
( ) ,    0.

( )
V a a a

 


 

 
   

 
                (46) 

 

 Substituting Eq. (46) in Eq. (45) and then setting the 

coefficients of ( ),   0,1,2,3,j j     to zero, then we 

obtain a set of algebraic equations involving  

0 1, , , ,a a k v and   as follows: 

  

 

 
4 

coeff.:  

   
42 2 2

1 1 23 ( ) 4 0,a k b av a c                        (47) 

 

  
3 

coeff.:  

 

 
  

 

2

1 1 12

1 2 2

0 1 2

( )
4 0,

( ) 4

a k av b a c
a

a k b av a c

  




    
  
   
 

       (48) 

 
2 

coeff.:  

 

 
 

 

2
2 0 1 0 22

1 2

22 2 2

0 1 1

2 2 (3)

1

3 6
4

6 ( ) ( )

2 ( ) 0,

a c a c
a

a b

a a k b av a k av b

a k b av




   

  

 

   
  

    

     

  

        (49) 

 

 
1 

 coeff.:  

 

 

 

2

0 1
2 2 (3)

0 1 0 2

4
2 0,

6 8 ( )

a b
a a

a c a c k av b

   


 

      
   

       

      (50) 

 

 
0  coeff.:  

 2 2

0 0 1 0 2

2

4 (a a c a c

a b



   

  

  
               (51) 

 

Solving this system, we obtain  

 

 

   

2
1

0 1

2 2

22

2 1

2

3 3 ( )
,   ,  

4 4

16 3
.

16 ( 1)

c k av b
a a

c c

c b c

c a



  




 
   

  




                  (52) 

 and  

 

 
2

1

2

2

3
,

4 ( )

c

c k av b

 
  


 


                   (53) 

 

 
2

1

2

2

3
.

4 ( )

c

c k av b

 
  





                         (54) 

 

 From Eqs. (53) and (54), it is possible to deduce  

 

 

 
2

1

2
2

3
2

4 ( )2
12

1

4 ( )
,

3

c

c k av bc k a v b
k e

c

 



 




 
 


               (55) 
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 and  

 

 

 
2

1

2
2

3
2

4 ( )2
1 22

1

4 ( )
,

3

c

c k av bc k a v b
k e k

c

 



 





 


         (56)            

 

where 
1k  and 

2k  are constants of integration. 

Substituting Eq. (55) and Eq. (56) into Eq. (46), we 

obtain the following exact solution to Eq. (42)  

 

 

 

 

 

 

 

   

2
1

2
2

2
1

2
2

22
2 1

2

1

24 2

2

1

3

4 ( )

1 1

2

22
2

1

3

4 ( )

1 2

16 3

16 ( 1)

( )

3
( , )

4 ( )4

3

c

c k av b

c

c k av b

c b c
i x t

c a

k av b

c

c k e
q x t

c k av bc

c

k e k

e

 


 


   
 



















    
    
    

  

 
 

 
 
 
 

   
 

 
 
 
 
 



 

(57) 

 

 

If we set  

 
 

2
1

02
2

32

4 ( )1

1 22

2

3
,    1,

4 ( )

c

c k av bc
k e c

c k a v b

 
 





  


 

 

we obtain: 

 

 

   
22

2 1

2

1

2

2

1 1

2
2 2

0

16 3

16 ( 1)

1 tanh

3( ) 3
( , )

8 16 ( )

( ( ) )

c b c
i x t

c a

c c
q x t

c c k av b

k x vt

e

  
 



 



    
        

  

    
  

    
    

   
       



        (58) 

 

 

   
22

2 1

2

1

2

21

1

02 2

2

16 3

16 ( 1)

1 coth

3( )
( , ) 3

( ( ) )8
16 ( )

c b c
i x t

c a

c
q x t c

k x vtc
c k av b

e

  
 



 




    
        

  

    
                 



      

                                                                                    (59) 

where v  is given by Eq. (10) and  

2( ) 0.c av b   

 

Equations (58) and (59) represent dark and singular soliton 

solutions respectively. 

 

 

3.4 Dual-power law nonlinearity 

 

The Dual-Power law nonlinearity is the case when 
2( )     .n nF s s s    For Dual-Power law nonlinearity, 

m n  in order for Eq. (5) to be integrable. Thus, (5) 

reduces to  

 

 

    

2 4

1 2

2 2
,

n n

t tx xx

n n

x
x x

iq aq bq c q c q q

i q q q q q  

   

  

              (60) 

 

 and Eq. (11) simplifies to  

 

   2 2

2 1 4 1

1 2( ) 0,n n

k b av U a b U

c U c U

   





 

    

   

             (61) 

 

 where 1 2  ,   .c c c c    Set  

 
1

2nU V                                     (62) 

 

 so that (61) transforms to  

 

  
 

 

22

2 2 2

2 3 2 4

1 2

( ) 2 (1 2 )

4

4 4 0.

k b av nVV n V

n a b V

n c V c n V

   



   

    

   

          (63) 

 

Balancing V V 
 with 

4V  in Eq. (13) gives 1.N   

Consequently we reach  

 

0 1 1

( )
( ) ,    0.

( )
V a a a

 


 

 
   

 
                      (64) 

 

Substituting Eq. (64) in Eq. (63) and then setting the 

coefficients of ( ),   0,1,2,3,j j    to zero, then we 

obtain a set of algebraic equations involving 

0 1, , , ,a a k v  and   as follows: 

 

 
4 

coeff.:  

 

 
2

42

1 2 2

1 2

(2 1)( )
0,

4

k n b av
a

a c n


  
    

               (65) 
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3 

coeff.:  

 

 

 

 

2

1 1

12 2
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 Solving this system, we obtain  
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and  
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 From Eqs. (71) and (72), it is possible to deduce  
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  (74) 

 where 
1k  and 

2k  are constants of integration. Substituting 

Eq. (73) and Eq. (74) into Eq. (64), we obtain the following 

exact solution to Eq. (60)  
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If we set  

 
 

22
1

02 2
2

(2 1)22

( 1) ( )1

1 2 2

2

2

(2 1)
, 

( 1) ( )

   1,

n n c

n c k av bn n c
k e

n c k av b

c




 


  


 

 

 

 

 we obtain: 
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(77)  

 

 where v  is given by Eq. (10) and  

 

2( ) 0.c av b   

 

Equations (76) and (77) represent dark and singular 

soliton solutions respectively. 

 

 

4. Conclusions 

 

This paper obtains dark and singular soliton 

solutions to the perturbed NLSE that was considered 

with four forms of nonlinear media. The integration 

alorithm applied is the modified simple equation 

method. These soliton solutions appear with the 

necessary integrability criteria that are often referred to 

as constraint conditions. Apparently, the shrtcoming of 

this scheme is that bright soliton solution cannot be 

recovered using this interability criteria. Later, this 

scheme will be applied to other situations such as 

brefringent fibers, DWDM systems, optical couplers and 

others. The results of those research will be soon visible. 

Additionally, models with time-dependent coefficients 

will also be considered. 
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