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This paper employs the powerful Laplace-Adomian decomposition scheme to study pulse polarization in birefringent fibers 
that is governed by Sasa-Satsuma equation is achieved for the first time. Both bright and dark soliton solutions are numerically 
addressed. The error measure stays impressively controlled by the scheme. The solitons that arise analytically from the 
governing system are almost identical to the numerical simulations carried out using LADM. The suggested iterative method 
obtains the solution devoid of any linearization, limiting assumptions, or discretization.  
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1. Introduction 

 
One of the detrimental features of soliton 

transmission across inter-continental distances is pulse 

polarization that is referred to as the phenomena of 

birefringence. This results in the governing model to split 

into vector-coupled system. This paper studies the split 

pulse dynamics numerically by Laplace-Adomian 

decomposition method (LADM). The governing model is 

the Sasa-Satsuma equation (SSE) that addresses the 

dynamics of soliton propagation across trans-continental 

and trans-oceanic distances in presence of perturbation 

terms which are of Hamiltonian type [1–6]. These 

perturbative effects stem from third order dispersion, self-

steepening effect and nonlinear dispersion. Bright and 

dark soliton solutions are numerically sketched with the 

implementation of LADM. The surface plots are 

compared with the ones that are obtained analytically. 

The agreement is truly awesome as indicated in the error 

tables! The details of the scheme along with the error 

tables of bright and dark solitons are enumerated and 

exhibited. It should also be clarified that the Sasa-

Satsuma equation with the effect of birefringence has 

recently been studied by other methods, for example, 

taking account the F-expansion scheme in [2], the 

modified simple equation approach in [8], and the trial 

equation approach in [9], but to our knowledge, it has 

never yet been solved using the decomposition strategy we 

suggest. 

Our work is divided in several sections. In the section 

“Governing equation”, we provide a brief introduction to the 

model given by the Sasa-Satsuma equation, taking the 

birefringence effect into consideration. In “Formulation of 

Laplace-Adomian decomposition method and its application” 

section, describes how to estimate the solution of the Sasa-

Satsuma equation in birefringent fibers using the Laplace-

Adomian decomposition technique. In the “Numerical 

Computation” section, the results of numerical experiment are 

shown in tables and graphs. In the final part, “Conclusions” 

we synthesize our results and present our conclusive words. 

 

 
2. Governing model 

 
The Sasa–Satsuma governing model [7] is displayed as 

follows 

 

𝑢𝑡 + 𝑎𝑢𝑥𝑥 + 𝑏|𝑢|2𝑢 

 

+𝑖[𝛼𝑢𝑥𝑥𝑥 + 𝛽|𝑢|2𝑢𝑥 + 𝜃(|𝑢|2)𝑥𝑢] = 0.        (1) 

 

The first term describes the temporal evolution of optical 

soliton molecules, while the coefficient 𝑏 describes the Kerr 

law fiber nonlinearity. In addition, the group velocity 

dispersion term is given the coefficient 𝑎, and the optical 
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soliton pulse profile is matched by 𝑢(𝑥, 𝑡). Lastly, the 

coefficients for self-steepening, stimulated Raman 

scattering, and third-order dispersion are given by 𝛽, 𝜃 

and 𝛼. 

The Sasa-Satsuma model in birefringent fibers is 

given by the system of two coupled one dimensional 

nonlinear Schrödinger equations in the form [8, 9] 

 

𝑖𝜓𝑡 + 𝑎1𝜓𝑥𝑥 + (𝑏1|𝜓|2 + 𝑐1|𝜑|2)𝜓 

 

+𝑖[𝛼1𝜓𝑥𝑥𝑥 + 𝛾1𝜑𝑥𝑥𝑥 + (𝛽1|𝜓|2 + 𝜂1|𝜑|2)𝜓𝑥 

 

+(𝜃1(|𝜓|2)𝑥 + 𝜆1(|𝜑|2)𝑥)𝜓] = 0,                 (2) 

 

𝑖𝜑𝑡 + 𝑎2𝜑𝑥𝑥 + (𝑏2|𝜑|2 + 𝑐2|𝜓|2)𝜑 
 

+𝑖[𝛼2𝜑𝑥𝑥𝑥 + 𝛾2𝜓𝑥𝑥𝑥 + (𝛽2|𝜑|2 + 𝜂2|𝜓|2)𝜑𝑥 

 

+(𝜃2(|𝜑|2)𝑥 + 𝜆2(|𝜓|2)𝑥)𝜑] = 0,               (3) 

 

with the inclusion of the self-steepening, stimulated 

Raman scattering in additionally third-order dispersion 

that sequentially are given with the real coefficients 𝛽𝑗, 

𝜂𝑗, 𝜃𝑗, 𝜆𝑗, 𝛼𝑗 and 𝛾𝑗. Moreover 𝜓 and 𝜑 are the complex 

amplitudes or envelopes of the two wave packets, 

respectively. It must be noted that in order to derive (2) 

and (3) from (1), for birefringent fibers, it is necessary to 

split 𝑢(𝑥, 𝑡) = 𝜓(𝑥, 𝑡) + 𝜑(𝑥, 𝑡) and substitute into (1) 

and then write the two components of the equation after 

neglecting the effects of four wave mixing. 

Several mathematical models including coupled 

nonlinear Schrödinger equations are related to the current 

research. Further details are in [10-13] and references 

therein. 

 

2.1. Bright solitons 

 
In order to look for bright solitons to the nonlinear 

Sasa-Satsuma equation having two different refractive 

indices given by (2-3), the starting points are [8]: 

 

𝜓(𝑥, 𝑡) = 𝐴1𝑠𝑒𝑐ℎ[𝐵1(𝑥 − 𝜈𝑡)]𝑒𝑖[−𝜅𝑥+𝜔𝑡+𝜃],        (4) 

 

𝜑(𝑥, 𝑡) = 𝐴2𝑠𝑒𝑐ℎ[𝐵2(𝑥 − 𝜈𝑡)]𝑒𝑖[−𝜅𝑥+𝜔𝑡+𝜃],        (5) 

 

where, the amplitudes for every 𝑗 = 1,2, are given by 

 

𝐴𝑗 = √
2(𝜅3𝛼𝑗+𝜅3𝛾𝑗+𝜅2𝑎𝑗+𝜔)

𝜅𝛽𝑗+𝜅𝜂𝑗+𝑏𝑗+𝑐𝑗
,                  (6) 

 

and the inverse width of the solitons 𝐵𝑗  are obtained as 

 

𝐵𝑗 = √
𝜅3𝛼𝑗+𝜅3𝛾𝑗+𝜅2𝑎𝑗+𝜔

3𝜅𝛼𝑗+3𝜅𝛾𝑗+𝑎𝑗
.                    (7) 

 

Moreover, the soliton speed, the frequency, the 

angular velocity and the phase center are ensured by the 

coefficient of 𝜈, 𝜅, 𝜔, 𝜃 respectively. Particularly, for the 

bright solitons to exist, the conditions 

                                  (𝜅𝛽𝑗 + 𝜅𝜂𝑗 + 𝑏𝑗 + 𝑐𝑗) 

 

× (𝜅3𝛼𝑗 + 𝜅3𝛾𝑗 + 𝜅2𝑎𝑗 + 𝜔) > 0,           (8) 

 

(3𝜅𝛼𝑗 + 3𝜅𝛾𝑗 + 𝑎𝑗) 

 

× (𝜅3𝛼𝑗 + 𝜅3𝛾𝑗 + 𝜅2𝑎𝑗 + 𝜔) > 0,            (9) 

 

must be fulfilled.  

 

2.2. Dark solitons 

 
In order to look for dark solitons to the nonlinear Sasa-

Satsuma equation having two different refractive indices 

given by (2-3), the starting points are [8]: 

 

𝜓(𝑥, 𝑡) = 𝐶1𝑡𝑎𝑛ℎ[𝐷1(𝑥 − 𝜈𝑡)]𝑒𝑖[−𝜅𝑥+𝜔𝑡+𝜃],     (10) 

 

𝜑(𝑥, 𝑡) = 𝐶2𝑡𝑎𝑛ℎ[𝐷2(𝑥 − 𝜈𝑡)]𝑒𝑖[−𝜅𝑥+𝜔𝑡+𝜃],   (11) 

 

where, the amplitudes for every 𝑗 = 1,2, are given by 

 

𝐶𝑗 = √
𝜅3𝛼𝑗+𝜅3𝛾𝑗+𝜅2𝑎𝑗+𝜔

𝜅𝛽𝑗+𝜅𝜂𝑗+𝑏𝑗+𝑐𝑗
,                  (12) 

 

and the inverse width of the solitons 𝐵𝑗  are obtained as 

 

𝐷𝑗 = √−
𝜅3𝛼𝑗+𝜅3𝛾𝑗+𝜅2𝑎𝑗+𝜔

2(3𝜅𝛼𝑗+3𝜅𝛾𝑗+𝑎𝑗)
.                  (13) 

 

Moreover, the soliton speed, the frequency, the angular 

velocity and the phase center are ensured by the coefficient of 

𝜈, 𝜅, 𝜔, 𝜃 respectively. Specifically, for the dark solitons to 

exist, the conditions 

 

(𝜅𝛽𝑗 + 𝜅𝜂𝑗 + 𝑏𝑗 + 𝑐𝑗) 

 

× (𝜅3𝛼𝑗 + 𝜅3𝛾𝑗 + 𝜅2𝑎𝑗 + 𝜔) > 0,           (14) 

 

(3𝜅𝛼𝑗 + 3𝜅𝛾𝑗 + 𝑎𝑗) 

 

× (𝜅3𝛼𝑗 + 𝜅3𝛾𝑗 + 𝜅2𝑎𝑗 + 𝜔) < 0,               (15) 

 

must be fulfilled.  

 

 
3. Formulation of Laplace-Adomian  
    decomposition method and its application 

 
In this section, we present a Laplace Adomian 

decomposition method (LADM) for obtaining a solution of 

nonlinear partial differential equations. The method was 

originally established in the mid-1980s by G. Adomian and 

R. Rach in [14], and its applications today are numerous. We 

will also apply the algorithm provided by the method to solve 

the Sasa-Satsuma in birefringent fibers model given by 

equations (2) and (3). 
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3.1. The general algorithm provided by LADM 

 
To show the basic idea of LADM, we consider the 

following PDE in general operator form 

 

𝐿𝑡𝑢(𝑥, 𝑡) + 𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡) = 0.            (16) 

 

where 𝐿𝑡 is the linear derivative operator in 𝑡, 𝑅 is the 

highest order linear derivative operator in 𝑥 and 𝑁 is the 

nonlinear term. In addition, the PDE will be subject to the 

initial condition: 

 

𝑢(𝑥, 0) = 𝑓(𝑥).                             (17) 

 

If the Laplace transform ℒ with respect to 𝑡 is applied 

to both sides of the Eq. (16) and considering the initial 

condition, it becomes, 

 

𝑠𝑢(𝑥, 𝑠) − 𝑢(𝑥, 0) = ℒ{𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡)}.     (18) 

 

If the Eq. (18) is simplified is simplified using ℒ−1 

we obtain 

 

𝑢(𝑥, 𝑡) = 𝑓(𝑥) + ℒ−1[
1

𝑠
ℒ{𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡)}].   (19)  

 

The solution 𝑢(𝑥, 𝑡) is given by 

 

𝑢(𝑥, 𝑡) = ∑∞
𝑛=0 𝑢𝑛(𝑥, 𝑡),                      (20) 

 

and the non-linear term, is represented by Adomain 

polynomials 

 

𝑁𝑢(𝑥, 𝑡) = ∑∞
𝑛=0 𝐴𝑛(𝑢0, 𝑢1, … , 𝑢𝑛),             (21) 

 

where the Adomian polynomials in the case of a variable 

are defined as [15, 16] 

 

𝐴0 = 𝑁(𝑢0), 
 

𝐴𝑛 =
1

𝑛
∑𝑛−1

𝑘=0 (𝑘 + 1)𝑢𝑘+1
𝜕

𝜕𝑢𝑘
𝐴𝑛−1, 𝑛 ≥ 1.      (22) 

 

Using Eqs. (20) and (21) in Eq. (19), we obtain 

 

∑

∞

𝑛=0

𝑢𝑛(𝑥, 𝑡) = 𝑓(𝑥) 

 

+ℒ−1[
1

𝑠
ℒ{𝑅(∑

∞

𝑛=0

𝑢𝑛(𝑥, 𝑡)) 

 

+ ∑∞
𝑛=0 𝐴𝑛(𝑢0, 𝑢1, … , 𝑢𝑛)}].                (23) 

 

Matching terms on the both sides, we acquire 

 

𝑢0(𝑥, 𝑡) = 𝑓(𝑥), 
 

𝑢1(𝑥, 𝑡) = ℒ−1[
1

𝑠
ℒ{𝑅𝑢0(𝑥, 𝑡) + 𝐴0(𝑢0)}], 

𝑢2(𝑥, 𝑡) = ℒ−1[
1

𝑠
ℒ{𝑅𝑢1(𝑥, 𝑡) + 𝐴1(𝑢0, 𝑢1)}], 

 

⋮ 
 

𝑢𝑛(𝑥, 𝑡) = ℒ−1[
1

𝑠
ℒ{𝑅𝑢𝑛−1(𝑥, 𝑡) 

 

+𝐴𝑛−1(𝑢0, 𝑢1, … , 𝑢𝑛−1)}]. 
 

In this way computing direct and inverse Laplace 

transform we get the approximate solution in the form of finite 

sum as 

 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) 

 

+𝑢2(𝑥, 𝑡) + ⋯ + 𝑢𝑁(𝑥, 𝑡).                 (24) 

 

It is important to mention that 𝑢0 is the first 

approximation that satisfies the boundary condition. In the 

next subsection, we will implement the recursive algorithm 

generated throughy LADM for the solution of the nonlinear 

Sasa-Satsuma in birefringent fibers model. The algorithm 

described above has been successfully applied in similar 

problems, which we can see in [17]. 

 

3.2. The method implementation for Sasa-Satsuma  

       equation 

 
Consider the Sasa-Satsuma model represented by (2) and 

(3). In order to obtain analytical approximate solutions for (2) 

and (3) using LADM, we first rewrite the equation in the 

following operator form: 

 

𝐷𝑡𝜓 = 𝑖𝑎1𝐿2𝑥𝜓 + 𝑖(𝑏1|𝜓|2 + 𝑐1|𝜑|2)𝜓 
 

−[𝛼1𝐿3𝑥𝜓 + 𝛾1𝐿3𝑥𝜑 + ((𝛽1|𝜓|2 + 𝜂1|𝜑|2)𝐿1𝑥𝜓 
 

+(𝜃1𝐿1𝑥(|𝜓|2) + 𝜆1𝐿1𝑥(|𝜑|2))𝜓],            (25) 

 

𝐷𝑡𝜑 = 𝑖𝑎2𝐿2𝑥𝜑 + 𝑖(𝑏2|𝜑|2 + 𝑐2|𝜓|2)𝜑 

 

−[𝛼2𝐿3𝑥𝜑 + 𝛾2𝐿3𝑥𝜓 + (𝛽2|𝜑|2 + 𝜂2|𝜓|2)𝐿1𝑥𝜑 

 

+(𝜃2𝐿1𝑥(|𝜑|2) + 𝜆2𝐿1𝑥(|𝜓|2))𝜑].             (26)  

 

where 𝐿𝑛𝑥 =
𝜕𝑛

𝜕𝑥𝑛 and 𝐷𝑡  is the time derivative. The LADM 

method begins by applying the Laplace transform to (25)-

(26), and then, by using given initial conditions, we obtain 

 

𝜓0(𝑥, 𝑡) = 𝑓(𝑥), 
 

𝜑0(𝑥, 𝑡) = 𝑔(𝑥), 
 

𝜓1(𝑥, 𝑡) = ℒ−1[
1

𝑠
ℒ{𝑅1(𝜓0, 𝜑0) + 𝐴0(𝜓0, 𝜑0)}], 

 

𝜑1(𝑥, 𝑡) = ℒ−1[
1

𝑠
ℒ{𝑅2(𝜓0, 𝜑0) + 𝐵0(𝜓0, 𝜑0)}], 
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⋮ 𝜓𝑛+1(𝑥, 𝑡) = ℒ−1[
1

𝑠
ℒ{𝑅1(𝜓𝑛, 𝜑𝑛) 

 
+𝐴𝑛(𝜓0, 𝜑0, … , 𝜓𝑛 , 𝜑𝑛)}], 

 

𝜑𝑛+1(𝑥, 𝑡) = ℒ−1[
1

𝑠
ℒ{𝑅2(𝜓𝑛 , 𝜑𝑛) 

 
+𝐵𝑛(𝜓0, 𝜑0, … , 𝜓𝑛, 𝜑𝑛)}].                     (27) 

 

In the LADM, the solutions 𝜓(𝑥, 𝑡) and 𝜑(𝑥, 𝑡) are 

defined by the infinite series as 

 

𝜓(𝑥, 𝑡) = ∑

∞

𝑛=0

𝜓𝑛(𝑥, 𝑡), 

 

 𝜑(𝑥, 𝑡) = ∑∞
𝑛=0 𝜑𝑛(𝑥, 𝑡).                     (28) 

 

The nonlinear terms 

 

𝑁1(𝜓, 𝜑) = 𝑖(𝑏1|𝜓|2 + 𝑐1|𝜑|2)𝜓 − ((𝛽1|𝜓|2 
 

+𝜂1|𝜑|2)𝐿1𝑥𝜓 + (𝜃1𝐿1𝑥(|𝜓|2) + 𝜆1𝐿1𝑥(|𝜑|2))𝜓,   (29) 

 

𝑁2(𝜓, 𝜑) = 𝑖(𝑏2|𝜑|2 + 𝑐2|𝜓|2)𝜑 − (𝛽2|𝜑|2 
 

+𝜂2|𝜓|2)𝐿1𝑥𝜑 + (𝜃2𝐿1𝑥(|𝜑|2) + 𝜆2𝐿1𝑥(|𝜓|2))𝜑,   (30) 

 

are expressed as an infinite series of the Adomian 

polynomials as 

 

𝑁1(𝜓, 𝜑) = ∑

∞

𝑛=0

𝐴𝑛(𝜓0, 𝜑0, … , 𝜓𝑛 , 𝜑𝑛), 

 

𝑁2(𝜓, 𝜑) = ∑∞
𝑛=0 𝐵𝑛(𝜓0, 𝜑0, … , 𝜓𝑛 , 𝜑𝑛),         (31) 

 

where the Adomian polynomials 𝐴𝑛 and 𝐵𝑚 depend on 

𝜓0, , … , 𝜓𝑛 , 𝜑0, … , 𝜑𝑛 which can be determined by the 

algorithm defined in [16]: 

 

𝐴𝑛 =
1

𝑛
[∑

𝑛−1

𝑘=0

(𝑘 + 1)𝜓𝑘+1

𝜕

𝜕𝜓𝑘

𝐴𝑛−1 

 

+ ∑𝑛−1
𝑘=0 (𝑘 + 1)𝜑𝑘+1

𝜕

𝜕𝜑𝑘
𝐴𝑛−1], 𝑛 ≥ 1,        (32) 

 

𝐵𝑚 =
1

𝑚
[ ∑

𝑚−1

𝑘=0

(𝑘 + 1)𝜓𝑘+1

𝜕

𝜕𝜓𝑘

𝐵𝑚−1 

 

+ ∑𝑚−1
𝑘=0 (𝑘 + 1)𝜑𝑘+1

𝜕

𝜕𝜑𝑘
𝐵𝑚−1], 𝑚 ≥ 1.     (33)  

 

By applying the algorithm we obtain 

 

𝐴0 = 𝑁1(𝜓0, 𝜑0), 
 

𝐴1 = 𝜓1

𝜕𝑁1

𝜕𝜓0

(𝜓0, 𝜑0) + 𝜑1

𝜕𝑁1

𝜕𝜑0

(𝜓0, 𝜑0), 

 

𝐴2 = 𝜓2

𝜕𝑁1

𝜕𝜓1

(𝜓0, 𝜑0) + 𝜑2

𝜕𝑁1

𝜕𝜑1

(𝜓0, 𝜑0) 

 

+
1

2!
𝜓1

2
𝜕2𝑁1

𝜕𝜓1
2 (𝜓0, 𝜑0) +

1

2!
𝜑1

2
𝜕2𝑁1

𝜕𝜑1
2 (𝜓0, 𝜑0) 

 

+𝜓1𝜑1

𝜕2𝑁1

𝜕𝜓1𝜑1

(𝜓0, 𝜑0), 

 

𝐴3 = 𝜓3

𝜕𝑁1

𝜕𝜓1

(𝜓0, 𝜑0) + 𝜑3

𝜕𝑁1

𝜕𝜑1

(𝜓0, 𝜑0) 

 

+𝜓1𝜓2

𝜕2𝑁1

𝜕𝜓1
2 (𝜓0, 𝜑0) + 𝜑1𝜑2

𝜕2𝑁1

𝜕𝜑1
2 (𝜓0, 𝜑0) 

 

+𝜓1𝜑1

𝜕2𝑁1

𝜕𝜓1𝜑1

(𝜓0, 𝜑0) + 𝜓1𝜑2

𝜕2𝑁1

𝜕𝜑1𝜓2

(𝜓0, 𝜑0) 

 

+
1

2!
𝜓1

2𝜑1

𝜕2𝑁1

𝜕𝜓1
2𝜓2

(𝜓0, 𝜑0) +
1

2!
𝜑2

2𝜓1

𝜕2𝑁1

𝜕𝜓1𝜑2
2 (𝜓0, 𝜑0) 

 

+
1

3!
𝜓1

3
𝜕3𝑁1

𝜕𝜓1
3 (𝜓0, 𝜑0) +

1

3!
𝜑1

3
𝜕3𝑁1

𝜕𝜑1
3 (𝜓0, 𝜑0), 

 

𝐵0 = 𝑁2(𝜓0, 𝜑0), 
 

𝐵1 = 𝜓1

𝜕𝑁2

𝜕𝜓0

(𝜓0, 𝜑0) + 𝜑1

𝜕𝑁2

𝜕𝜑0

(𝜓0, 𝜑0), 

 

𝐵2 = 𝜓2

𝜕𝑁2

𝜕𝜓1

(𝜓0, 𝜑0) + 𝜑2

𝜕𝑁2

𝜕𝜑1

(𝜓0, 𝜑0) 

 

+
1

2!
𝜓1

2
𝜕2𝑁2

𝜕𝜓1
2 (𝜓0, 𝜑0) +

1

2!
𝜑1

2
𝜕2𝑁2

𝜕𝜑1
2 (𝜓0, 𝜑0) 

 

+𝜓1𝜑1

𝜕2𝑁2

𝜕𝜓1𝜑1

(𝜓0, 𝜑0), 

 

𝐵3 = 𝜓3

𝜕𝑁2

𝜕𝜓1

(𝜓0, 𝜑0) + 𝜑3

𝜕𝑁2

𝜕𝜑1

(𝜓0, 𝜑0) 

 

+𝜓1𝜓2

𝜕2𝑁2

𝜕𝜓1
2 (𝜓0, 𝜑0) + 𝜑1𝜑2

𝜕2𝑁2

𝜕𝜑1
2 (𝜓0, 𝜑0) 

 

+𝜓1𝜑1

𝜕2𝑁2

𝜕𝜓1𝜑1

(𝜓0, 𝜑0) + 𝜓1𝜑2

𝜕2𝑁2

𝜕𝜑1𝜓2

(𝜓0, 𝜑0) 

 

+
1

2!
𝜓1

2𝜑1

𝜕2𝑁2

𝜕𝜓1
2𝜓2

(𝜓0, 𝜑0) +
1

2!
𝜑2

2𝜓1

𝜕2𝑁2

𝜕𝜓1𝜑2
2 (𝜓0, 𝜑0) 

 

+
1

3!
𝜓1

3
𝜕3𝑁2

𝜕𝜓1
3 (𝜓0, 𝜑0) +

1

3!
𝜑1

3
𝜕3𝑁2

𝜕𝜑1
3 (𝜓0, 𝜑0), 
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The analysis introduced above will illustrated by 

discussing the following numerical examples in the next 

section. 

 

 
4. Numerical computation 

 
We will illustrate the LADM method to find soliton 

solutions for the Sasa-Satsuma equation for both the 

bright and dark cases with different coefficient systems. 

The examples considered below will be solved using  

Mathematica software for the implementation of the 

algorithm. 

 

4.1. Simulation to bright solitons 

 
We consider the coupled nonlinear SSE equation in 

birefringent fibers given by the system of Eqs. (2) and (3) 

and we choose the initial condition: 

 

𝜓(𝑥, 0) = 𝐴1𝑠𝑒𝑐ℎ[𝐵1(𝑥)]𝑒𝑖[−𝜅𝑥+𝜃],        (34) 

 

𝜑(𝑥, 0) = 𝐴2𝑠𝑒𝑐ℎ[𝐵2(𝑥)]𝑒𝑖[−𝜅𝑥+𝜃].        (35) 

 

The coefficient systems and parameters for these 

simulations are given in Table 1 and the results are shown in 

Figs. 1, 2 and 3. 

 

4.2. Simulation to dark solitons 

 
We consider the coupled nonlinear SSE equation in 

birefringent fibers given by the system of Eqs. (2) and (3) and 

we choose the initial condition: 

 

𝜓(𝑥, 0) = 𝐶1𝑡𝑎𝑛ℎ[𝐷1(𝑥)]𝑒𝑖[−𝜅𝑥+𝜃],             (36) 

  

𝜑(𝑥, 0) = 𝐶2𝑡𝑎𝑛ℎ[𝐷2(𝑥)]𝑒𝑖[−𝜅𝑥+𝜃].             (37) 

 

The coefficient systems and parameters for these 

simulations are given in Table 2 and the results are shown in 

Figs. 4, 5 and 6. 

 

 

 

 

 

 

 
Table 1. Bright solitons with SSE, simulations with 𝑁 = 14 

 

 
 

 
Table 2. Dark solitons with SSE, simulations with 𝑁 = 14 
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Fig. 1. The numerical simulations of the solutions of the equations (2) and (3) for case (a) of Table 1 with 𝑁 = 14. The dynamic 

behavior of |𝜓(𝑥, 𝑡)|2 (i) and corresponding density plot (ii). The dynamic behavior of |𝜑(𝑥, 𝑡)|2 (iii) and corresponding density 

plot (iv) (color online) 
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Fig. 2. The numerical simulations of the solutions of the equations (2) and (3) for case (b) of Table 1 with 𝑁 = 14. The dynamic 

behavior of |𝜓(𝑥, 𝑡)|2 (i) and corresponding density plot (ii). The dynamic behavior of |𝜑(𝑥, 𝑡)|2 (iii) and corresponding density 

plot (iv) (color online)
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Fig. 3. The numerical simulations of the solutions of the equations (2) and (3) for case (c) of Table 1 with 𝑁 = 14. The dynamic 

behavior of |𝜓(𝑥, 𝑡)|2 (i) and corresponding density plot (ii). The dynamic behavior of |𝜑(𝑥, 𝑡)|2 (iii) and corresponding density 

plot (iv) (color online) 
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Fig. 4. The numerical simulations of the solutions of the equations (2) and (3) for case (d) of Table 2 with 𝑁 = 14. The dynamic 

behavior of |𝜓(𝑥, 𝑡)|2 (i) and corresponding density plot (ii). The dynamic behavior of |𝜑(𝑥, 𝑡)|2 (iii) and corresponding density 

plot (iv) (color online)
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Fig. 5. The numerical simulations of the solutions of the equations (1) and (2) for case (e) of Table 2 with 𝑁 = 14. The dynamic 

behavior of |𝜓(𝑥, 𝑡)|2 (i) and corresponding density plot (ii). The dynamic behavior of |𝜑(𝑥, 𝑡)|2 (iii) and corresponding density 

plot (iv) (color online)
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Fig. 6. The numerical simulations of the solutions of the equations (1) and (2) for case (f) of Table 2 with 𝑁 = 14. The dynamic 

behavior of |𝜓(𝑥, 𝑡)|2 (i) and corresponding density plot (ii). The dynamic behavior of |𝜑(𝑥, 𝑡)|2 (iii) and corresponding density 

plot (iv) (color online) 

 

In the six examples shown above, the greatest error 

was on the order of 10−7, indicating that LADM takes 

less computing effort than traditional techniques. Other 

advantages include the ability to solve nonlinear 

problems without linearization, the wide applicability to 

several types of problems and scientific fields, and the 

development of a reliable, analytic solution. 

 

 
5. Conclusions 

 
This paper studied the SSE numerically to visualize 

bright and dark optical solitons in birefringent fibers. 

ADM has made this transparency possible. The 

perturbation terms are of Hamiltonian type as in the model 

that is considered for polarization-preserving fibers. The 

surface plots and error tables are all included. The results are 

thus a complete display of the numerical analysis of vector-

coupled SSE that studies soliton propagation through 

birefringent fibers. The impressive results thus open up 

additional avenues to venture SSE numerically that would 

also yield such surface plots. Some such algorithms are 

variational iteration approach, finite element method, finite 

difference scheme and several different approaches. The 

results of those research undertakings are soon going to be 

disseminated across the board that will be along the lines of 

the previously reported results [14-17]. 
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