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Determining whether a Diophantine equation has a solution or not is the most important challenge in solving this type of 
problems. In this paper a special computational device which uses light rays is proposed to answer this question, namely 
check the existence of nonnegative solutions for linear Diophantine equations. The way of representation for this device is 
similar to an directed graph, having a number of nodes equal to the number of variables of the equation plus the destination 
node. The arcs connecting these nodes have assigned a number (length) which corresponds to coefficients of the equation 
or it is a predefined constant. The light traversing the device follows all possible routes. In each arc it will be delayed by an 
amount of time indicated by the length of that arc. At the destination node, if a light ray arrives at the moment equal to the 
free term of the equation plus some constants we may infer that the equation has solution, otherwise it has not. 
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1.  Introduction 
 
Solving Diophantine equations belong to the class of 

difficult problems. Hilbert’s 10th problem [17] asked if an 
algorithm exists for determining whether an arbitrary 
Diophantine equation has a solution or not. 

In this paper we use light in a special device for 
deciding whether a linear Diophantine equation has 
nonnegative solutions or not. The problem asks to find if 

the equation cxa
n

i
ii =∑

=1
*  has positive integer solutions, 

where the coefficients ai and c are positive integer values. 

Since the problem is difficult there is no other way to 
solve it, but generating all possible combinations of values 
for the variables. We do this by taking into account the 
massive parallelism of the light rays. 

For the purpose of generating all possible solutions 
we propose a device which has a graph-like structure. To 
each arc we assign either a number corresponding to 
coefficients of the equation, either a predefined constant. 
The length of an arc is directly proportional to the number 
assigned to it.  

Initially a light ray is sent to the starting node. In each 
node the incoming light is divided into 2 subrays. One of 
the subrays is directed to the next node and the other 
subray is sent back to the current node. 

Each arc delays the ray by an amount of time equal to 
the number assign to it. At the destination node we will 
check if there is a ray arriving in the destination node at 
the moment equal to c (plus some constants introduced by 
the system). 

The paper is organized as follows: Related work in the 
field of optical computing is briefly overviewed in section 
2. The definition of a Diophantine equation is given in 
section 3. The proposed device and the list of components 

required by this system are presented in section 4. 
Complexity is discussed in section 5. Physical 
implementation and difficulties encountered by the 
proposed device are 6 discussed in section6. Suggestions 
for improving the device are given in section 6.4. Further 
work directions are suggested in section 7. 

 
 
2. Related work 
 
Most of the major computational devices today are 

using electric power in order to perform useful 
computations.  

Another idea is to use light instead of electrical power. 
It is hoped that optical computing could advance computer 
architecture and can improve the speed of data input and 
output by several orders of magnitude [7]. Optical 
computation has some advantages, one of them being the 
fact that it can perform some operations faster than 
conventional devices.  

Many theoretical and practical light-based devices 
have been proposed for dealing with various problems. 

An important practical step was made by Intel 
researchers who have developed the first continuous wave 
all-silicon laser using a physical property called the Raman 
Effect [6, 30, 34, 35]. The device could lead to such 
practical applications as optical amplifiers, lasers, 
wavelength converters, and new kinds of lossless optical 
devices. 

Another solution comes from Lenslet [18] which has 
created a very fast processor for vector-matrix 
multiplications. This processor can perform up to 8000 
Giga Multiple-Accumulate instructions per second. 
Lenslet technology has already been applied to data 
analysis using k−mean algorithm and video compression. 

In [14] was presented a new, principally non-
dissipative digital logic architecture which involves a 
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distributed and parallel input scheme where logical 
functions are evaluated at the speed of light. The system is 
based on digital logic vectors rather than the Boolean 
scalars of electronic logic. This new logic paradigm was 
specially developed with optical implementation in mind. 
Since each such gate has two input signals and only one 
output signal, such architectures are fundamentally 
dissipative in information and energy. Their serial nature 
also induces latency in the processing time.  

A recent paper [36] introduces the idea of sorting by 
using some properties of light. The method called 
Rainbow Sort is based on the physical concepts of 
refraction and dispersion. It is inspired by the observation 
that light that traverses a prism is sorted by wavelength. 
For implementing the Rainbow Sort one need to perform 
the following steps: 

• encode multiple wavelengths (representing the 
numbers to be sorted) into a light ray, 

• send the ray through a prism which will split the 
ray into n monochromatic rays that are sorted by 
wavelength, 

• read the output by using a special detector that 
receives the incoming rays. 

A stable version of the Rainbow Sort is proposed in 
[24]. 

Naughton (et al.) proposed and investigated [25, 41] a 
model called the continuous space machine which operates 
in discrete time-steps over a number of two-dimensional 
complex-valued images of constant size and arbitrary 
spatial resolution. The (constant time) operations on 
images include Fourier transformation, multiplication, 
addition, thresholding, copying and scaling. 

 
2.1  Related optical devices for NP-complete  
       problems 
 
Our purpose is to solve NP-complete problems. This 

is why we also review optical devices specially designed 
for attacking NP-complete problems. Currently, acording 
to our knowledge, 5 problems have been solved using 
optical priciples. They are: Hamiltonian Path problem [26, 
27], Traveling Salesman Problem [3, 5, 37, 11, 12, 13], 
standard subset sum problem [28, 42], Exact Cover [29] 
and unbounded subset sum [23]. 

A system which solves the Hamiltonian path problem 
(HPP) [9] by using light and its properties has been 
proposed in [26, 27]. The device has the same structure as 
the graph where the solution is to be found 1. The light is 
delayed within nodes, whereas the delays introduced by 
arcs are constants. Because the problem asks that each 
node has to be visited exactly once, a special delaying 
system was designed. At the destination node we will 
search for a ray which has visited each node exactly once. 
This is very easy due to the special properties of the 
delaying system. 
  

 
 

Fig. 1. A schematic representation of the device used for 
solving an instance of HPP with 6 nodes. In each node 
the light is delayed by a certain amount of time. The 
device generates all possible paths in the graph and 
finally  decides  if  there  is  a  Hamiltonian  path  or  not. 

 
 

An optical device for the standard subset sum problem 
(each element can appear no more than once in the 
solution) was proposed in [28]. The basic idea was to 
generate all possible subsets and then to select the good 
one (whose sum of numbers is equal to the target sum). 
Note that the generation of all posibile subsets is done in 
O(B) time, but with an exponential consumption of energy. 
A possible design for this device is give in Figure 2. 
  

 
 

Fig. 2. A schematic representation of the device used for 
solving an instance of standard subset sum with 4 
numbers. On each arc we have depicted its length. There 
are n cables of length k and n cables of length ai+k 

(1≤i≤n, ai  belongs  to  set  A  and  k  is  a constant). This  

       device does generate all possible subsets of A. 
 
 

Another idea for solving the subset sum problem is to 
use discrete convolution. It is widely known that the n-
point discrete Fourier transform computation can be 
performed, optically, in only unit time [10, 33]. Based on 
that, a solution to the subset sum problem can be obtained 
by discrete convolution [42]. The idea is that the 
convolution of 2 functions is the same as the product of 
their frequencies representation. 

An optical solution for solving the traveling salesman 
problem (TSP) was proposed in [37]. The power of optics 
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in this method was done by using a fast matrix-vector 
multiplication between a binary matrix, representing all 
feasible TSP tours, and a gray-scale vector, representing 
the weights among the TSP cities. The multiplication was 
performed optically by using an optical correlator. To 
synthesize the initial binary matrix representing all 
feasible tours, an efficient algorithm was provided. 
However, since the number of all tours is exponential the 
method is difficult to be implemented even for small 
instances. 

TSP was also solved in [11, 12] by using a similar 
idea as in [26, 27]. 

An optical system which finds solutions to the 6-city 
TSP using a Kohonen-type network was proposed in [3]. 
The system shows robustness with regard to the light 
intensity fluctuations and weight discretization which have 
been simulated. The authors suggested a relatively large 
number of TSP cities can be handled by using this method. 

In the case of Exact Cover the original problem was 
decomposed in 2 subproblems: generating all subsets of 
the given set and then selecting the correct one [29]. For 
the first step we have designed a light-based device which 
has a graph-like structure. Each arc can represent either an 
element of C or can be a skipping arc. An arc will actually 
delay the signal (light) which passes through by a certain 
amount of time. The nodes are connected by arcs in such 
way all possible subsets of C are generated. For the second 
part we have assigned, to each item from the set to be 
covered, a special positive number such that sum of all 
numbers assigned to that set is not equal to any other 
combination of numbers assigned to items from the set. 
These numbers have the same property as in the case of 
optical solution for the Hamiltonian Path problem [26]. 

 
 

3.  Linear Diophantine equations 
 
Diophantine equations are indeterminate polynomial 

equations in which only integer solutions are allowed. So, 
if we are given a polynomial equation f(x1,...xn) = 0, with 
integer coefficients, we are asked to find any integer 
solution. 

In 1900, in recognition of their depth, Hilbert 
proposed the solvability of all Diophantine problems as the 
tenth of his celebrated problems [17]. In 1970, a novel 
result in mathematical logic known as Matiyasevich’s 
theorem settled the problem negatively: in general 
Diophantine problems are unsolvable [20]. 

This is why solving Diophantine equations is not an 
easy task. Even the decision whether an equation has 
solutions or not can be a real challenge. In [21] it was 
proved that the problem of deciding if there are positive 

integer solutions for the equation a*x2+b*y=c where a,b 
and c are positive integers, is NP-complete [9]. Some 
specific cases of Diophantine equations and their 
computational complexities were studied [39]. 

A linear Diophantine equation is an equation of the 

general form cxa
n

i
ii =∑

=1
* , where ai (1≤i≤n) and c are 

integer values. 
For the case of linear Diophantine equation in two 

variables a*x+b*y=c with integer solutions the existence 
of solutions is a very simple problem concerning 
divisibility of numbers. If c is a multiple of the least 
common divisor of a and b then the equation has solution. 
In all other situations the equation has no solution. 

However, in this paper we are interested in finding if a 
Diophantine equation with positive coefficients has 
nonnegative solutions. This case is more difficult than the 
previous one since more restrictions are imposed here [2]. 
Moreover, we work with equations that have more than 2 
variables, so the problem gets even harder. 

 
 

4.  The proposed idea 
 

This section deeply describes the proposed system. Section 
4.1 describes the properties of light which are useful for 
our device. Section 4.2 introduces the operations 
performed by the components of our device. Basic ideas 
behind our concept are given in section 4.3. 

 
4.1  Light and its properties 
 
In our device we are considering the light because it 

has two properties which are useful for our purposes: 
• The speed of light has a limit. The value of the 

limit is not very important at this stage of explanation. The 
speed will become important when we will try to measure 
the moment when rays arrive at the destination node (see 
section 6.1). What is important now is the fact that we can 
delay the ray by forcing it to pass through an optical fiber 
cable of a certain length. 

• The ray can be easily divided into multiple rays 
of smaller intensity/power. Beam-splitters are used for this 
operation. 

 
4.2  Operations performed within our device 
 
The proposed device has a graph like structure. 

Generally speaking one operation is performed when a ray 
passes through a node and one operation is performed 
when a ray passes through an arc. 

• When passing through an arc the light ray is 
delayed by the amount of time assigned to that arc. 

• When the ray is passing through a node it is 
divided into a number of rays equal to the external degree 
of that node. Each obtained ray is directed toward one of 
the nodes connected to the current node. 

At the destination node we will check if there is a ray 
which has arrived in the destination node at moment c 
(plus a constant value). 
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4.3  The device 
 
The aim of our device is to generate all possible 

values for variables. 
The device is represented similar to a directed graph 

having a number of nodes equal to the number of variables 
of the Diophantine equation plus the destination node. The 
coefficients of the equation are assigned to the arcs of the 
graph and represent the delays induced to the signals 
(light) that passes through this device. In practice, the 
delays are induced by forcing a signal to pass through a 
cable of a given length. 

In each node (but the destination one) we place a 
beam-splitter which will split a ray into 2 subrays of 
smaller intensity, one subray going back to the same node 
and the other one to the next node. The subray going back 
in the same node will actually mean an increase by one 
unit of the corresponding variable. So, if a sub-ray has 
visited the arc of length a2 five times it means that x2=5. 

The value of a variable can increase to high values, 
because the light can be divided multiple times inside a 
node. 

Each arc connecting 2 consecutive nodes was 
supposed to have length 0 because we are not interested in 
the delays between nodes. However, in practice, we cannot 
have cables of length 0. This is why we assigned them a 
constant value k. 
An example of representation for an equation with 3 
variables is depicted in Figure 3. 
  

 
 

Fig. 3. A schematic representation of the device used for 
solving an instance with 3 variables. On each arc we 
have depicted its length. There are n cables of constant 
length k. The other n cables have the  lengths  ai (1≤i≤n). 

 
 

The ray of light skipping all arcs labeled by numbers 
ai is actually the ray encoding the value 0 for each variable 

(xi=0, 1≤i≤n). 

The ray which has passed once through the arc labeled 
with a1 and has skipped all other arcs a2, a3, ..., an encodes 

the values (x1=1, x2=0, ..., xn=0) for variables. 
We can see that each path from Start to Destination 

contains exactly n times value k. Thus, at the destination 
we will not wait anymore at moment c. Instead we will 
wait for a solution at moment c+n*k since all results will 
have the constant n*k added. 

The total delay of a particular ray is ∑
=

n

i
ii xa

1

* . We 

have two cases here: 
• If there is a ray arriving at moment c+n*k means 

that the equation has nonnegative solutions. 
• If there is no ray arriving at moment c+n*k means 

that the equation does not have nonnegative solutions. 
If there are 2 rays arriving at the same moment in the 
Destination it simply means that there are multiple 
solutions of the equation. This is not a problem for us 
because we want to answer the YES/NO decision problem 
(see section 3). We are not interested at this moment 
which are the values of the variables representing the 
solution. 

Because we are working with continuous signal we 
cannot expect to have discrete output at the destination 
node. This means that rays arrival is notified by 
fluctuations in the intensity of the light. These fluctuations 
will be transformed, by a photodiode, in fluctuations of the 
electric power which will be easily read by an 
oscilloscope. 

Now it has become clearer why the have added the 
restriction that all constants and variables in our system 
should be nonnegative. These values represent either the 
length of some cables (the coefficients ai) or tell us how 

many times a particular arc has been traversed by a given 
ray (the value of variables xi). 

 
4.4  How the system works 
 
In the graph depicted in Figure 3 the light will enter in 

the device from the Start direction (left part of the picture). 
When it enters in a node it will be divided into 2 subrays 
of smaller intensity.  

In the destination node we will have light rays 
arriving at different moments. This is because some rays 
have visited the arcs labeled with a1, a2, ..., an more time 
than the others. 

The ray arriving at moment n*k means that xi = 0, 1 ≤ 
i ≤ n. The ray which has visited the arc of length a1 three 

times and the arc labeled with a2 5 times and has skipped 

all other arcs (a3, ..., an) means (x1=3, x2 = 5, x3 = 0, ..., 
xn=0). 

Assuming that we have an equation with 3 variables 
(x1, x2 and x3). The graph for that problem was depicted in 

Figure 3. The moments when the rays will arrive in the 
destination node are: 
{ 
3k, 
a1+3k, a2+3k, a3+3k 
a1+a1+3k, a1+a2+3k, a1+a3+3k, a2+a1+3k, a2+a2+3k, 
a2+a3+3k, a3+a1+3k, a3+a2+3k, a3+a3+3k,  
... 
} 

The moments are represented as a set because they 
might not be distinct. 
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5.  Complexity 
 
The time required to build the device has O(n*c) 

complexity. We assume that all coefficients are shorter 
than c, otherwise they cannot participate to the final 
solution. 

Because the ray encoding the solution takes O(c) time 
to reach the destination node we may say that the 
complexity is O(c). 

The intensity of the signal decreases exponentially 
with the number of nodes. This is why the required power 
is exponential with the number variables and the value of 
each variable. 

We are also interested to find the maximal value for 
the coefficients. We need this value, because the 
coefficients are actually cables in our system. We cannot 
have any value for the coefficients because we have 
available a limited length for each cable. Let us suppose 
that we have 3 kilometers for each cable.  

Each coefficient is less or equal to c. So, let us see 
how large c can be. We know that the shortest delay 
possible is 0.0003 meters. Having a cable of 3 kilometers 

we may encode coefficients less than 107. 
Longer cables may also be available. Take for 

instance the optical cables linking the cities in a given 
country. We may easily find cables having 300 km. In this 

case we may work with coefficients smaller than 109. This 
is a little bit smaller than the largest integer value 
represented over 32 bits. 

 
 

6. Tips for physical implementation &  
    difficulties 
 
For implementing the proposed device we need the 

following components: 
• a source of light (laser), 
• Several beam-splitters for dividing light rays into 

2 subrays. A standard beam-splitter is designed using a 
half-silvered mirror (see Figure 4), 

• A high speed photodiode for converting light rays 
into electrical power. The photodiode is placed in the 
destination node, 

• A tool for detecting fluctuations in the intensity 
of electric power generated by the photodiode 
(oscilloscope), 

• A set of optical fiber cables having lengths equals 
to the coefficients of the Diophantine equation and another 
set of n cables having fixed length k. These cables are used 
for connecting nodes.  
  

 
 

Fig. 4. The mechanism inside a node of the graph from 
Figure 3. It show the way in which a ray can be split into 
2 sub-rays by using a beam-splitter. One subray is sent to 
the next node. The other subray will loop back in the 
current node. This means that the value for that variable  
                              is increased by 1. 

 
 

6.1  Precision 
 
One important problem is that we cannot measure the 

moment c+n*k exactly. We can do this measurement only 
with a given precision which depends on the tools 
involved in the experiments. Actually it will depend on the 
response time of the photodiode and the rise time of the 
oscilloscope. 

The rise-time of the best oscilloscope available on the 

market is in the range of picoseconds (10−12 seconds). 
This means that we should not have two signals that arrive 
at 2 consecutive moments at a difference smaller than 

10−12 seconds. We cannot distinguish them if they arrive 

in a smaller than 10−12s interval. In our case it simply 
means that if a signal arrives in the destination in the 
interval [c+n*k-1012, c+n*k+1012] we cannot be perfectly 
sure that we have a correct subset or another one which 
does not have the wanted property. 

Knowing that the speed of light is 3⋅108m/s we can 
easily compute the minimal cable length that should be 

traversed by the ray in order to be delayed with 10−12 
seconds. This is obviously 0.0003 meters. 

This value is the minimal delay that should be 
introduced by an arc in order to ensure that the difference 
between the moments when two consecutive signals arrive 
at the destination node is greater or equal to the 

measurable unit of 10−12 seconds. This will also ensure 
that we will be able to correctly identify whether the signal 
has arrived in the destination node at a moment equal to 
the sum of delays introduced by each arc.  
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Once we have the length for that minimal delay is 
quite easy to compute the length of the other cables that 
are used in order to induce a certain delay. 

Note that the maximal number of nodes can be 
increased when the precision of our measurement 
instruments (oscilloscope and photodiode) is increased. 

 
6.2  Power decrease 
 
The intensity of the signal decreases exponentially 

with the number of nodes that are traversed. When the ray 
is passing through a node it is divided using beam splitters 
into 2 subrays. If divided uniformly we could have a 2 
times decrease in the intensity for each subray. If a ray is 

passing through 10 nodes we can have a decrease of 210 
times from the initial power. 

This means that, at the destination node, we have to be 
able to detect very small fluctuations in the intensity of the 
signal. For this purpose we will use a photomultiplier [8] 
which is an extremely sensitive detector of light in the 
ultraviolet, visible and near infrared range. This detector 
multiplies the signal produced by incident light by as 

much as 108, from which even single photons can be 
detected. 

 
6.3  Technical challenges 
 
There are many technical challenges that must be 

solved when implementing the proposed device. Some of 
them are: 

• Cutting the optic fibers to an exact length with 
high precision. Failing to accomplish this task can lead to 
errors in detecting if there was a fluctuation in the intensity 
at moment c+n*k, 

• Finding a high precision oscilloscope. This is an 
essential step for measuring the moment c+n*k exactly 
(see section 6.1). 

 
6.4  Improving the device 
 
The speed of the light in optic fibers is an important 

parameter in our device. The problem is that the light is 
too fast for our measurement tools. We have either to 
increase the precision of our measurement tools or to 
decrease the speed of light. 

It is known that the speed of light traversing a cable is 
significantly smaller than the speed of light in the void 
space. Commercially available cables have limit the speed 
of the ray wave up to 60% from the original speed of light. 
This means that we can obtain the same delay by using a 
shorter cable. 

However, this method for reducing the speed of light 
is not enough for our purpose. The order of magnitude is 
still the same. This is why we have the search for other 
methods for reducing that speed. A very interesting 
solution was proposed in [16] which is able to reduce the 
speed of light by 7 orders of magnitude and even to stop it 
[1, 19]. In [1] they succeeded in completely halting light 
by directing it into a mass of hot rubidium gas, the atoms 

of which, behaved like tiny mirrors, due to an interference 
pattern in two control beams. 

This could help our mechanism significantly. 
However, how to use this idea for our device is still an 
open question because of the complex equipment involved 
in those experiments [16, 19]. 

By reducing the speed of light by 7 orders of 
magnitude we can reduce the size of the involved cables 
by a similar order (assuming that the precision of the 
measurement tools is still the same). This will help us to 
solve larger instances of the problem. 

 
 

7.  Conclusions and further work 
 
The way in which light can be used for performing 

useful computations has been suggested in this paper. The 
techniques are based on the massive parallelism of the 
light ray. 

It has been shown the way in which a light-based 
device can be used for solving Diophantine equations. 
Using the today technology we can build a light-based 
device which can solve small and medium size instances 
in several seconds. 

Further work directions will be focused on: 
• Implementing the proposed device, 
• Cutting new cables each time when a new 

instance has to be solved is extremely inefficient. This is 
why finding a simple way to reuse the previously utilized 
cables is a priority for our system, 

• Automate the entire process, 
• Our device cannot find the set of numbers 

representing the solution. It can only say if there is a 
solution or not. If there are multiple solutions we cannot 
distinguish them. However, finding if the equation has 
solution or not if more than 2 variables are involved is still 
a difficult problem. We are currently investigating a way 
to store the order of nodes so that we can easily 
reconstruct the path, 

• Using the device for other types of Diophantine 
equations, 

• Finding other ways to introduce delays in the 
system. The current solution requires cables that are too 
long and too expensive, 

• Using other type of signals instead of light. 
Possible candidates are electric power and sound. 
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