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The prediction of the properties of inorganic compounds by data-driven machine learning methods has gradually become a 
research hotspot in the field of materials science. In this work, the machine learning models of the least absolute shrinkage 
and selection operator (Lasso), kernel ridge regression (KRR), Gaussian process regression (GPR), random forests 
regression (RFR), support vector regression (SVR) and gradient boosting regression (GBR) were utilized to predict band gaps 
of ternary oxides for phosphor hosts. The results show that the GBR is a robust and feasible model with higher performance. 
Besides, the importance of each feature is analyzed quantificationally based on the GBR model. It indicates that two features 
(i.e., the average of molar heat capacity and the range of metallic valence) play a great role in affecting the predictive 
performance of band gaps. Besides, the Shapley additive explanation (SHAP) is used to elaborate the results from the GBR 
model. This work not only demonstrates the feasibility of machine learning to predict band gaps based only on the chemical 
composition but also contributes to the prediction of the other properties of inorganic materials. 
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1. Introduction 
 

Exploring new materials with high performance for the 

specific application is an important subject in materials 

science. The research methods of materials science can be 

roughly divided into experimental and computational (or 

theoretical) methods. Experimental methods mainly rely on 

the accumulation of the experience of researchers. 

Although they are relatively intuitive, it may sometimes be 

faced with several problems, such as high preparation costs, 

long research and development cycle and low efficiency. In 

recent years, first-principles calculations, molecular 

dynamics simulation, finite element simulation and other 

calculation methods have achieved remarkable results in 

semiconductor materials [1], rare earth luminescent 

materials [2, 3], new energy materials [4] and so on [5, 6]. 

However, the demand for new materials is increasing along 

with the cycle of research getting shorter, so the 

shortcoming of high computing cost for high-throughput 

computing methods is becoming increasingly prominent. 

The traditional calculation methods may be difficult to 

meet the efficient screening and discovery of new materials. 

Thanks to the rapid development of artificial 

intelligence and the improvement of hardware facilities, the 

application of machine learning in the study on materials 

has become possible. Based on the massive calculated and 

experimental results, the machine learning methods can 

quickly learn useful information and achieve the prediction 

of material properties (such as the structural and 

mechanical properties of alloys [7-11]). Ahmad et al. [12] 

employed the support vectormachine (SVM), random 

forest (RF), Adaboost and k-nearest neighbor (KNN) 

models to achieve the prediction of the shear strength of 

rockfill materials. Kauwe et al. [13] confirmed the 

feasibility of the prediction for the heat capacity of solid 

inorganics by using the linear regression (LR), support 

vector regression (SVR), and random forest regression 

(RFR). Formation energies of oxygen vacancies in metal 

oxide materials can also be predicted through the machine 

learning model [14]. Machine learning technologies has 

also allowed researchers to predict the glass formation 

ability [15, 16], Debye temperature [17] and energy-level 

structures [18]. 

As well known, inorganic phosphors have a wide range 

of applications in solid-state lighting and display [19, 20]. 

They are composed of hosts (such as oxides, nitrides and 

halides) and luminescent centers (such as rare-earth and 

transition metal ions). The screening for the optimum host 

is important for finding high-performance phosphors. It is 

noted that the band gap is an important property, 

corresponding to the difference of the energy between the 

bottom of the conduction band and the top of the valence 

band of semiconductors or insulators [21, 22]. It determines 

band structures of materials and influences their electronic 

structures and optical properties. In this work, six important 

machine learning models, namely the least absolute 

shrinkage and selection operator (Lasso), kernel ridge 

regression (KRR), Gaussian process regression (GPR), 

RFR, SVR and gradient boosting regression (GBR) are 

developed to predict band gaps of phosphor hosts. 773 

potential hosts and 129 features were used as the input of 

the models. By comparing the output results of the models, 

it is found that the the GBR gives better predictive 

performance of band gaps of the selected materials. 
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Furthermore, the importance score of the features based on 

the GBR model is analyzed deeply and the possible 

underlying reasons are explained reasonably. A meticulous 

understanding about the band gap of materials may promote 

the process of screening out stable and effective phosphor 

hosts. This work provides useful help for the design and 

synthesis of phosphors. 

 
 
2. Calculation methods 
 

Machine learning was proposed by Samuel [23] in 

1959, and is an inter-discipline involving the probability 

theory, statistics and computer science. The principle of 

machine learning is that the model make the accurate judge 

and decision through learning the past experience or data. A 

simple workflow of machine learning for predicting 

material properties is shown in Fig. 1, which contains the 

data collection and preprocessing, model building and 

evaluation. In this work, the samples with the target 

material property (i.e., the band gap) for specific types of 

compounds are collected from the open-access database. 

The machine learning models are trained by using 

featurized data, and further evaluated by the performance 

metrics. 
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Fig. 1. The workflow of the prediction model of material properties via machine learning 

 

2.1. Data collection and preprocessing 

 

The aim of this work is to predict band gaps of ternary 

inorganic oxides for phosphor hosts. The data collection is 

firstly carried out in the Materials Project database [24]. It 

is an open-access database that contains lots of inorganic 

materials with relevant properties information. A total of 

2032 AαBβOγ-type inorganic compounds (α, β and γ are 

positive integers) were collected as the raw data set, and the 

elements of A and B are illustrated in Fig. 2. It is noted that 

the oxides with relatively small band gaps (<3.0 eV) are 

eliminated, considering that a wide band gap is critical for 

the hosts of phosphors [25]. Therefore, the final data set in 

this work consists of the values of the band gaps for 733 

oxide samples. Then, the data set above was divided 

randomly into two sets: the training (696 samples) and test 

sets (37 samples). The feature generation is a very 

important step that directly affects the performance of the 

model. 43 different variables of the elements [26] listed in 

Table 1 (e.g., the period, electronegativity, atomic radius, 

Mendeleev number, boiling point etc.) are extended to 129 

features via the operations of the weighted average, the sum 

and the max-min, by using Python Materials Genomics 

(Pymatgen) library [27]. Then, the features and the target 

property are normalized by using the StandardScaler 

module in the machine learning library Scikit-learn 

(Sklearn) [28] to guarantee the normal distribution with 0 

mean and 1 variance for each data. The selected models are 

trained by using different numbers of features, according to 

the calculated Pearson correlation coefficients between the 

features. It is found that the reduction of the number of 

features hardly improves the accuracy of the model, so all 

129 features are included for the train of the model. 
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Fig. 2. The element composition of phosphor hosts (AαBβOγ) considered in this work. 2032 AαBβOγ-type inorganic compounds and  

their band gap values are collected from Materials Project database considering the specific rules of composition (color online) 

 

 

2.2. Machine learning model 

 

2.2.1. Lasso 

 

The regression models (i.e., the Lasso, KRR, GPR, 

RFR, SVR and GBR) are utilized in this work, in 

consideration that the predicted outcomes (band gaps) in 

the supervised learning are continuous variables. The Lasso 

model has been proposed by Tibshirani in 1996 [29]. In this 

model, there is an upper bound for the sum of the absolute 

values of some model parameters. It is noted that a 

regularization process of the penalizing coefficient of 

regression variables is applied, in order to achieve that goal. 

The L1 regularization method was used herein, and its 

objective function is expressed as follows: 
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wx y  represents the sum of squared errors 

between the predicted and actual values.  is a constant 
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w  is L1-norm of the coefficient vector. 

 

2.2.2. KRR 

 

The KRR is a non-linear prediction model combining 

nuclear technique and ridge regression [30]. It uses the 

kernel function to map the original non-linear data to a 

kernel space, so that the data can be linearly separable in the 

kernel space, and then the data can be linear ridge 

regression in the kernel space. Compared with Lasso, L2 

regularization was used in KRR, and its loss function is 

expressed as follows: 
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where 
2

2
w  is L2-norm of the coefficient vector. 

 

2.2.3. GPR 

 

Gaussian process is a supervised learning method, 

which is used to solve classification and regression 

problems. It refers to a stochastic process in which any 

finite random variables and their subsets obey a Gaussian 

distribution. The GPR is a Gaussian process to achieve the 

purpose of the regression [31]. The covariance function 

and means function are key variables, which uniquely 

determine the properties of Gaussian regression. The GPR 

is a prior-based regression analysis model based on 

Bayesian and statistical theories, and shows good effects in 

complex regression problems, such as the high dimension, 

small sample size and nonlinearity. 

 

2.2.4. RFR 

 

The RF is introduced by Breiman in the early 2000s 

[32]. It is an ensemble machine learning model, which is 

based on a large number of independent decision trees. 

Their output results are then summarized, in order to 

achieve better performance than the individual model. In 

general, the RF is not only used for the classification (RFC) 

but also the regression (RFR) purposes. In this work, the 

RFR is adopted to predict band gaps. The construction 

procedure is summarized in following: 

Step (1): The training set data is divided into a series of 
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sub-datasets with N samples by the bootstrap statistical 

method. The N samples with M features are selected one by 

one (with the return) and used to train a decision tree, being 

regarded as the node sample. 

Step (2): The samples of nodes are split in the process 

of training. The m features are selected randomly from the 

M features (m << M). Then, one of the m features is selected 

as the sample node according to a certain strategy. 

Step (3): Each sample node is split according to Step 

(2), until that it cannot be split. 

Step (4): Many decision trees are built according to 

Steps (1)–(3), achieving the goal to construct the RF. Final 

results are obtained by averaging the predicted values of all 

decision trees. 

 

2.2.5. SVR 

 

Boser et al. proposed the theory of support vector 

machine (SVM) [33], which can be applied to solve both 

the classification and regression problems. Considering that 

some data are not completely linearly separable, the 

conception of soft margin was introduced as follows: 
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where C >> 0 is a penalty parameter, each iξ  is related to 

the distance between the object i  and the respective 

margin hyperplane.  and b  is the normal vector and the 

bias of the hyperplane, respectively. The dot product of the 

high dimensional space is replaced by the kernel function 

operation of the low dimensional space, in order to deal 

with the curse of dimensionality for the high dimensional 

space. There are many kinds of kernel functions, such as 

linear and radial basis function (RBF). In this study, the 

RBF is adopted, as shown in the following equation: 
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where ix  is the center of kernel function and σ  

represents the width parameter of function. 

 

2.2.6. GBR 

 

As one of the models closing to real distribution fitting 

in traditional machine learning models, the Gradient 

Boosting Decision Tree (GBDT) is an ensemble model 

used for classification and regression [34, 35]. In the 

GBDT, the accuracy of final regression results is improved 

by means of adopting an additive model (a linear 

combination of basis function), which can constantly 

reduce the residual in the training process. A weak 

estimator is produced and then trained, on the basis of the 

residual error of the prior estimator in each of the iterations. 

It should be noted that the GBDT is particularly good at 

handling dense numerical features, since the features with 

the largest statistical information will be picked to build the 

trees. The regression model of the GBDT (i.e., the GBR) 

was used in this work. 

 

2.3. Performance metrics 

 

The performance of a machine learning model on the 

test set is particularly important, as it directly reflects the 

prediction ability of the model. The coefficient of 

determination (R2), the mean absolute error (MAE) and the 

mean squared error (MSE) were selected to evaluate the 

predictive capacity of the model. Their values can be 

computed by the equations (5)–(7): 
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where m  denotes the number of samples, jT  is the real 

values, T  is the mean value of real values and jP  is the 

predicted value by using the fitted model. 

 
 
3. Results and discussion 
 

The training set is used to train and optimize the six 

classical machine learning models (Lasso, KRR, GPR, RFR, 

SVR and GBR), in order to better predict band gaps of 

phosphor hosts. The adjustable parameters of selected 

models (see Table 2) are respectively optimized according 

to the GridSearchCV method [28]. It should be noticed that 

GridSearchCV method, which combines grid search and 

cross validation, are used for parameter adjustment in this 

work. The parameters of each model are given in Table 2 

and the other parameters for each model are default values. 

It should be noted that the parameters of each model are 

using the GridSearchCV method to set the search space, 

and the optimal parameters are sought under the cross 

validation method. Here, taking GBR as an example, the 

learning curves of Random_state and Max_depth 

parameters are shown in Figs. 3a-3b. They show the 
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implementation process of the parameter tuning, and reflect 

the trends between parameters and model performance in a 

certain search space. The optimal parameters are 

determined for model training through the learning curve of 

parameters. According to the trained models, the band gap 

prediction results of the test set are shown in Table 3. It is 

easy to find that the predicted band gaps of the majority of 

compounds are in a good agreement with DFT-calculated 

ones for most of the models (such as the GPR, RFR, SVR 

and GBR). 

The predicted and DFT-calculated band gaps are 

demonstrated in Figs. 4a-4d. They intuitively reveal the 

degree of deviation between the predicted and 

DFT-calculated band gaps. The gray lines are related to 

ideal situations, that is, the predicted band gaps are equal to 

the DFT-calculated ones. The red lines represent the linear 

fitting results. It is found that the predictive error of the 

Lasso and KRR models are relatively large, along with 

most of the points deviating from the ideal line. The GPR, 

RFR and SVR models perform well, and the predictive 

performance of the GBR is the most excellent among six 

models, with the smallest angle between red and gray lines. 

These results also indicate that in the case of the optimal 

model parameters, different models have various predictive 

capacities although on the same test set. 

The performance metrics R2, MAE and MSE are 

usually used to evaluate the performance of the models (see 

Table 2). It is easy to find that the GBR model gets the 

maximum R2, which reaches up to 0.822, and its MSE 

(0.094) is the smallest. The difference of predicted results 

among GPR, RFR and SVR models is small, along with 

that their R2 values are 0.73, 0.756 and 0.775, respectively. 

However, Lasso and KRR models perform bad and just 

have the accuracy of 0.522 and 0.580, respectively. There 

are many factors that affect the performance of the models, 

such as the selection of the data set and features, as well as 

the parameter tuning. Herein, the reason for the bad 

performance of Lasso and KRR models may be that they 

are not sensitive enough to the nonlinear data. 

In order to confirm the accuracy of predicted results, 

the above calculations are repeated for ten times under the 

condition that the parameters were unchanged. The mean 

values of R2, MAE and MSE of ten tests for six models are 

calculated, and it is found that the GBR gets the best 

predictive performance. The number of times that the GBR 

performed best, reached up to five. It is proving that the 

GBR is superior to the other five models in this 

circumstance. Although the R2 of the GBR is not high, it has 

the best performance in comparison with the other five 

models for the same test. The reason for this may be that, 

the parameters are the same in the process of conducting 10 

tests for a certain model. 
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Fig. 3. The learning curves of the parameters of (a) Max_depth 

and (b) Random_state (color online)
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Table 1. 43 different element variables used for the generation of features 

 

Feature number Element variables Feature number Element variables 

1-3 First ionization potential 67-69 Period number 

4-6 Allred-Rochow electronegativity 70-72 Zunger radii sums 

7-9 Atomic number 73-75 Abs valence 

10-12 Atomic radius 76-78 Family number 

13-15 Atomic weight 79-81 Gilman number of valence electrons 

16-18 Boiling point 82-84 Group number 

19-21 Cohesive energy 85-87 Heat atomization 

22-24 Covalent radius 88-90 Heat of fusion 

25-27 Critical temperature 91-93 Heat of vaporization 

28-30 Density 94-96 Ionic radius 

31-33 Gordy electronegativity 97-99 Quantum number l 

34-36 Melting point 100-102 Metallic valence 

37-39 Mendeleev number 103-105 Number of valence electrons 

40-42 Molar density 106-108 Number of outer shell electrons 

43-45 Molar heat capacity 109-111 Polarizability 

46-48 Nagle electronegativity 112-114 Specific heat 

49-51 Number of unfilled d valence electrons 115-117 Thermal conductivity 

52-54 Number of unfilled f valence electrons 118-120 Number of s valence electrons 

55-57 Number of unfilled p valence electrons 121-123 Number of p valence electrons 

58-60 Number of unfilled s valence electrons 114-126 Number of d valence electrons 

61-63 Orbital radius 127-129 Number of f valence electrons 

64-66 Pauling electronegativity   
 

 

Table 2. Optimized parameters and the evaluation metrics of band gap prediction employing regression models on the test set 

 

Model Parameters R2 MAE MSE 

Lasso 
alpha = 0.0006, 

max_iter = 10000 
0.522 0.422 0.252 

KRR 

kernel = “polynomial”, alpha = 0.68, 

coef0 = 3.99, 

degree = 3 

0.580 0.385 0.222 

GPR 
kernel = “RBF”, alpha = 0.1,  

n_restarts_optimizer = 6 
0.735 0.270 0.140 

RFR max_depth = 17 0.756 0.291 0.137 

SVR 

kernel = “rbf”, C = 5, 

epsilon = 0.25, 

gamma = 0.0188 

0.775 0.264 0.119 

GBR 

n_estimators = 391, 

random_state = 36, 

learning_rate = 0.1, max_depth = 5 

0.822 0.245 0.094 
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Fig. 4. Predicted band gaps of 37 compounds for the test set from (a) Lasso, (b) KRR, (c) GPR, (d) RFR, (e) SVR and  

(f) GBR models, in comparison with the DFT-calculated values (color online) 

 

The GradientBoostingRegressor module from the 

Sklearn library was used in order to analyze the 

contribution of each feature to the prediction of band gaps. 

It should be noted that the feature importance score sum to 

1.0. The higher importance score represents the deeper 

degree of contribution of the feature. The features with the 

importance score of larger than 0.75% are plotted in Fig. 5, 

according to the GBR model. One can find that the features 

“the average of molar heat capacity” and “the range of 

metallic valence” (with the highest two values of the feature 

importance) have a much more important effect on the 

prediction. The molar heat capacity is defined as the 

amount of heat needed, in order to make one mole of the 

substance to cause an increase of one unit in its temperature. 

It reflects the electron transition process from the top of the 

valence band to the bottom of the conduction band. Besides, 

the metallic valence of the elements represents the 

oxidation state, affecting the degree of electron excitation 

or relaxation. Both features indeed contribute to the 

prediction of band gaps. The importance score of the third- 

to sixth-ranked of features are in the range from 3.03% to 

7.54%. 

The Shapley additive explanation (SHAP) analysis [35] 

is further carried out, in order to explain the rationality of 

the importance of features derived from the GBR. 

According to the SHAP analysis, the feature importance 

scores for 37 samples of the test set from the GBR are 

obtained, as shown in Fig. 6.  
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Fig. 5. The feature importance scores (representing the 

contribution to the prediction of band gaps) based on the GBR 

(color online) 

It is found that the feature “the range of metallic 

valence” has the widest distribution, indicating the most 

important influence on the prediction of band gaps. In 

addition, the feature “the average of molar heat capacity” 

has the second most important influence. The top 2 

important features determined from the SHAP analysis are 

consistent with those from the GBR. 

 

 

 

 

 

 

 

 
 

 

 

Table 3. Band gaps (in units of eV) of the test set predicted from six machine learning models, along with the DFT-calculated values  

The relative errors of predicted results are also listed, in comparison with DFT-calculated values 

 

Composition Lasso KRR GPR RFR SVR GBR DFT 

Al4CdO7 3.399(11%) 3.350(9%) 3.056(3%) 3.406(11%) 3.217(5%) 2.965(−3%) 3.064 

BaSi2O5 4.440(−29%) 4.645(−3%) 4.624(5%) 4.394(−8%) 4.609(−4%) 4.364(−9%) 4.792 

Ca8Si5O18 3.972(−25%) 4.048(−11%) 4.632(5%) 4.503(−1%) 4.357(−4%) 4.503(−1%) 4.546 

Cs4Si3O8 3.776(−6%) 3.835(6%) 3.722(4%) 3.813(5%) 3.620(0.4%) 3.579(−1%) 3.633 

Dy4B6O15 4.949(−38%) 5.115(−7%) 5.260(5%) 5.362(−2%) 5.108(−7%) 5.495(0.3%) 5.476 

Er2SiO5 4.285(−29%) 4.439(−7%) 4.466(4%) 4.642(−2%) 4.435(−7%) 4.585(−4%) 4.759 

Gd4Ga2O9 2.642(6%) 2.670(−16%) 2.934(3%) 3.589(12%) 2.905(−9%) 3.403(7%) 3.192 

Ho2SiO5 4.585(−28%) 4.576(−3%) 4.679(5%) 4.672(−1%) 4.604(−2%) 4.585(−2%) 4.702 

HoIO 3.545(−2%) 3.393(−2%) 3.644(4%) 3.539(2%) 3.603(4%) 3.496(1%) 3.465 

HoPO4 5.559(−43%) 5.487(−7%) 5.938(6%) 5.855(−1%) 5.974(1%) 5.979(1%) 5.912 

KClO3 4.977(−39%) 4.992(−11%) 5.452(5%) 5.183(−7%) 5.650(1%) 5.295(−5%) 5.582 

KPO3 4.660(−34%) 4.338(16%) 4.255(4%) 4.600(−11%) 4.571(−12%) 4.848(−6%) 5.183 

La2P4O13 4.482(−31%) 4.573(−7%) 4.944(5%) 4.884(−1%) 4.820(−2%) 4.860(−1%) 4.920 

La2SiO5 4.039(−24%) 4.058(−10%) 4.447(4%) 4.357(−3%) 4.550(1%) 4.622(3%) 4.500 

La3PO7 4.110(−16%) 4.023(−1%) 4.308(4%) 4.387(8%) 4.131(2%) 4.414(9%) 4.062 

La4Ga2O9 3.282(−13%) 3.191(−18%) 3.511(4%) 3.681(−5%) 3.502(−10%) 3.708(−5%) 3.885 

Lu3Al5O12 4.697(−33%) 4.531(−10%) 4.756(5%) 4.482(−11%) 4.469(−11%) 4.603(−9%) 5.036 

MgB4O7 5.580(−41%) 5.773(1%) 5.332(5%) 6.038(5%) 5.224(−9%) 5.857(2%) 5.743 

MgP4O11 5.530(−34%) 5.087(−1%) 4.958(5%) 5.271(3%) 4.638(−9%) 5.387(5%) 5.121 

MgSO3 5.268(−32%) 5.587(12%) 5.770(6%) 5.276(5%) 5.697(14%) 5.415(8%) 5.007 

MoP3O9 3.404(−20%) 3.356(−21%) 3.256(3%) 3.508(−17%) 3.336(−21%) 3.592(−15%) 4.246 

NaAlO2 3.964(−29%) 4.067(−15%) 4.316(4%) 4.370(−9%) 4.475(−7%) 4.188(−13%) 4.805 

Nd3PO7 4.404(−21%) 4.447(4%) 4.441(4%) 4.204(−2%) 4.257(−1%) 4.457(4%) 4.284 

NdB3O6 5.140(−38%) 5.258(−5%) 5.516(6%) 5.458(−1%) 5.437(−1%) 5.586(1%) 5.519 

NdCl3O12 4.952(−31%) 4.773(−3%) 4.850(5%) 5.084(4%) 4.836(−1%) 5.005(2%) 4.896 
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Composition Lasso KRR GPR RFR SVR GBR DFT 

NdFO 4.645(−36%) 4.567(−14%) 4.662(5%) 4.891(−8%) 4.771(−10%) 4.860(−8%) 5.293 

PrBrO 3.485(−24%) 3.679(−18%) 4.101(4%) 4.015(−10%) 4.198(−6%) 4.101(−8%) 4.462 

RbBO2 4.675(−13%) 4.457(13%) 4.069(4%) 4.270(9%) 4.025(2%) 4.097(4%) 3.927 

ScAlO3 4.347(−26%) 4.707(2%) 4.901(5%) 4.938(8%) 4.822(5%) 4.985(9%) 4.593 

Sr10Al6O19 3.907(−8%) 3.380(−8%) 3.488(3%) 3.896(6%) 3.434(−7%) 3.843(4%) 3.688 

Sr2GeO4 3.612(−5%) 3.538(−1%) 3.432(3%) 3.456(−3%) 3.380(−5%) 3.401(−5%) 3.566 

SrN2O6 3.929(−9%) 3.934(5%) 3.706(4%) 4.584(23%) 3.817(2%) 3.799(2%) 3.733 

Tm2SiO5 4.593(−26%) 4.661(1%) 4.558(5%) 4.630(1%) 4.519(−2%) 4.503(−2%) 4.607 

YBrO 3.890(−25%) 3.853(−15%) 3.930(4%) 3.896(−14%) 4.006(−11%) 3.954(−12%) 4.507 

ZnP4O11 4.267(−29%) 4.498(−6%) 4.624(5%) 4.302(−10%) 4.703(−1%) 4.286(−10%) 4.769 

Zr3SO9 4.478(−11%) 4.164(9%) 4.055(4%) 3.849(1%) 3.915(3%) 3.949(4%) 3.809 

ZrS2O8 4.686(−5%) 4.566(28%) 4.335(4%) 4.155(17%) 4.171(17%) 4.198 (18%) 3.564 

 

 
 

Fig. 6. Correlation between the band gaps and input features (color online) 
 
4. Conclusions 
 

In this work, six machine learning models (i.e., the 

Lasso, KRR, GPR, RFR, SVR and GBR) are adopted to 

predict band gaps of ternary oxides for phosphor hosts, 

according to the chemical composition properties of 

specific elements. 733 oxide compounds and their 129 

features are chosen as the input of machine learning models. 

The predictive performances of the selected models are 

examined and compared. One can find that the GBR leads 

to the best performance, showing that it is a useful and 

relatively accurate machine learning model for the 

prediction of band gaps. The performance metrics R2 of the 

GPR, RFR, SVR and GBR are in the range of 0.735-0.822, 

while the R2 of the Lasso and KRR are much lower. 

Moreover, the results of the feature importance ranking 

reveal that “the average of molar heat capacity” and “the 

range of metallic valence” are important physical quantities 

affecting the performance of the band-gap prediction based 

on the GBR model. In addition, the conclusion is further 

verified by the SHAP analysis. This work shows that 

machine learning methods are powerful tools for predicting 
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band gaps of ternary oxides. Besides, the optimized models 

may also be used to predict other material properties for 

rapidly discovering new functional materials. 
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