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solitons are reported, that come with constraint conditions for the existence of solitons.  
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1. Introduction 
 

Resonant solitons appear during bifurcation of the 

scattering matrix. These solitons are studied extensively 

with various forms of nonlinear media in presence of 

several perturbation terms. These perturbations are with 

full nonlinearity and are of Hamiltonian type. There are 

various forms of mathematical tools, such as trial 

equation method, that are applicable to study resonant 

solitons, and other nonlinear evolution equations, as it 

has been seen in the past [1-42]. These studies with 

resonant solitons are conducted with constant 

coefficients as well as time-dependent coefficients. 

Several forms of nonlinear media have been addressed in 

this context. Some of the most commonly addressed 

nonlinear forms are Kerr law, power law, parabolic law 

and dual-power law. This paper will address resonant 

solitons with several other forms of non-Kerr law that 

are less commonly studied in mathematical photonics. 

These are quadratic-cubic law, anti-cubic law, cubic-

quintic-septic law, triple-power law and log-law. The 

governing equation is the resonant nonlinear 

Schrödinger’s equation (RNLSE) that will be addressed 

in this paper with time-dependent coefficients. The 

integration methodology adopted here is the trial 

equation scheme. Bright, dark and singular soliton 

solutions will be retrieved for this model and these 

solitons will exist under certain restrictions that are also 

presented as constraint conditions. 

 

1.1. Governing model 

 
The RNLSE with time-dependent coefficients is of the 

form [1-14, 17-19, 21-28, 30]: 
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here, in (1), the first term is the linear evolution, while  

(t) is the coefficient of group velocity dispersion (GVD) 

and β(t) is the coefficient of nonlinearity. Finally, γ(t) is 

quantum or Bohm potential that appears in the context of 

chiral solitons in quantum Hall effect. Also, the functional F 

meets the following technical criteria: F is a real-valued 

algebraic function and it is necessary to have the smoothness 

of the complex function CCqqF :)(
2

. Considering the 

complex plane C as a two-dimensional linear space R2, the 

function qqF )(
2

 is k times continuously differentiable, so 

that 
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In presence of perturbation terms with time-

dependent coefficients, RNLSE is modified to [10] 
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where δ(t) is the inter-modal dispersion, λ(t) represents 

the coefficient of self-steepening for short pulses and 

μ(t) is the higher-order dispersion coefficient. The 

parameter m is the full nonlinearity parameter. 

 

 

2. Short review of the integration algorithm 

 

A short review of trial equation method begins as 

[15, 16, 20, 29]: 

Step 1: Suppose a nonlinear PDE with time-

dependent coefficients 

 

          0,...,,,,, xxxttttt uuuuuuP             (3) 

 

can be converted to an ordinary differential equation 

(ODE) 
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using a travelling wave hypothesis ),(),( Utxu   

vtx , where )(UU   is an unknown function, Q 

is a polynomial in the variable U and its derivatives. If 

all terms contain derivatives, then Eq. (4) is integrated 

where integration constants are considered zeros. 

Step 2: Take the trial equation 
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where 
la , )....,,2,1,0( Nl   are constants to be 

determined. Substituting Eq. (5) and other derivative 

terms such as U′′ or U′′′ and so on into Eq. (4) yields a 

polynomial G(U) of U. According to the balance 

principle we can determine the value of N. Setting the 

coefficients of G(U) to zero, we get a system of algebraic 

equations. Solving this system, we can determine N and 

values of 
Naaa ....,,, 10

. 

Step 3: Rewrite Eq. (5) by the integral form 

 

        
)(

)( 0
UF

dU
                        (6) 

 

According to the complete discrimination system of 

the polynomial, we classify the roots of F(U), and solve 

the integral Eq. (6). Thus we obtain the exact solutions 

to Eq. (3). 

3. Soliton solutions 

 

In order to solve Eq. (2) by the trial equation method, 

we use the following wave transformation 

 

    
t

ttxi dttxeUtxq
0

))(( )(2,)(),(  
     (7) 

 

Substituting Eq. (7) into Eq. (2) and then decomposing 

into real and imaginary parts yields a pair of relations. The 

imaginary part gives 
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while the real part gives 
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Eq. (9) can be integrated to determine the soliton 

profile. 

 

3.1. Quadratic-cubic law 

 

Here, 
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where )(1 t and )(2 t  are time-dependent coefficients. 

Therefore, RNLSE is given by 
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and Eq. (9) simplifies to 
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Balancing U′′ with U2m+1 in Eq. (11), then we get N = 2m 

+ 2. Using the solution procedure of the trial equation 

method, we obtain the system of algebraic equations as 

follows: 
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0  attCoeffU   

 
Solving the above system leads to 
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Substituting these results into Eqs. (5) and (6), we 

get 
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In order to carry out the integration of Eq. (13) it is 

necessary to choose m = 1. Thus, with m = 1, new Eq. 

(13) is following: 
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Case 1 

Eq. (14) can be integrated with respect to U if we set 

 

  
,

)()()()(9

)(2
,0

2

2
1

20
tttt

t
aa






  

 

Thus, we obtain exact solutions of Eq. (10): 
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where )(t  is given by Eq. (12). 

Eq. (15) and Eq. (16) represent dark and singular soliton 

solution respectively. These solitons are valid for 
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Case 2 

Eq. (14) can be integrated with respect to U if we set 
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Thus, we obtain exact solutions of Eq. (10): 
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where )(t  is given by Eq. (12). 

Eq. (17) and Eq. (18) represent bright and singular 

soliton solutions respectively. These solitons are valid for  
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where )(t  is given by Eq. (12).  

Eq. (19) and Eq. (20) represent singular periodic 

solutions. These solutions are valid for 
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3.2. Anti-cubic law 

 

In this case, 
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where )(1 t , )(2 t and )(3 t  are time-dependent 

coefficients. Therefore, RNLSE is given by 
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and Eq. (9) simplifies to 
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By using transformation 
21VU  , Eq. (22) 

becomes 
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Balancing ''VV or 
2)'(V  with 

2mV  in Eq. (23), 

then we get N = m + 2. Using the solution procedure of 

the trial equation method, we obtain the system of 

algebraic equations as follows: 
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Solving the above system leads to 
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Substituting these results into Eqs. (5) and (6), we get 
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To carry out the integration of Eq. (25) requires that m = 

1. Thus, with m = 1, new Eq. (25) is following: 
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Eq. (26) can be integrated with respect to V if we set 
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Thus, we obtain exact solutions of Eq. (21): 
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where )(t  is given by Eq. (24). 

Eq. (27) and Eq. (28) represent singular periodic 

solutions. These solutions are valid for 
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where )(t  is given by Eq. (24).  

Eq. (29) and Eq. (30) represent dark and singular 

soliton solution respectively. These solitons are valid for 
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3.3. Cubic-quintic-septic law 

 

In this case, 
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where )(1 t , )(2 t and )(3 t  are time-dependent 

coefficients. Therefore, RNLSE is given by 
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and Eq. (9) simplifies to 
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By using transformation 
21VU  , Eq. (32) becomes 
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Balancing ''VV or 
2)'(V  with 

2mV  in Eq. (33), then 

we get N = m + 2. Using the solution procedure of the trial 

equation method, we obtain the system of algebraic 

equations as follows: 
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Solving the above system leads to 
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Substituting these results into Eqs. (5) and (6), we 

get 
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To carry out the integration of Eq. (35) requires that 

m = 3. Thus, with m = 3, new Eq. (35) is following: 
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Eq. (36) can be integrated with respect to V if we set 
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Thus, we obtain exact solutions of Eq. (31): 
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where )(t  is given by Eq. (34). 

Eq. (37) and Eq. (38) represent dark and singular soliton 

solution respectively. These solitons are valid for 
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3.4. Triple-power law 

 

In this case, 
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where )(1 t , )(2 t  and )(3 t  are time-dependent 

coefficients. Therefore, RNLSE is given by 
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and Eq. (9) simplifies to 
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By using transformation 
21VU  , Eq. (40) becomes 
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Balancing ''VV or 
2)'(V  with 
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N . Using the solution procedure of the trial 

equation method, we obtain the system of algebraic 
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Solving the above system leads to 
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Substituting these results into Eqs. (5) and (6), we 

get 
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To carry out the integration of Eq. (43) requires that 

m = 3n. Thus, with m = 3n, new Eq. (43) is following: 
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Eq. (44) can be integrated with respect to V if we set 
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Thus, we obtain exact solutions of Eq. (39): 
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where )(t  is given by Eq. (42). 

Eq. (45) and Eq. (46) represent dark and singular soliton 

solution respectively. These solitons are valid for 
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3.5. Log-law  

 

In this case, 
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so that Eq. (2) is given by 
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and Eq. (9) simplifies to 
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To obtain an analytic solution, we use the transformation 
VeU   in Eq. (49) to find 
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In order to carry out the balancing procedure in Eq. 

(50), it is helpful to set 0)( t . This indicates that the 

perturbed RNLSE with log-law nonlinearity can be 

integrated only when the self- steepening term is not present. 

In this case, the perturbed RNLSE collapses to 

 

  

  qqtqti

q
q

q
tqqtqtiq

x

m

x

xx
xxt

2
)()(

)(ln)()(























       (51) 

 

and Eq. (50) reduces to 
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Balancing ''V  with V in Eq. (52), then we get N = 

2. Using the solution procedure of the trial equation 

method, we obtain the system of algebraic equations as 

follows: 
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Solving the above system leads to 
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Substituting these results into Eqs. (5) and (6), we 

get 
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Integrating Eq. (54), we obtain the exact Gausson 

solutions of Eq. (51) as 
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where )(t  is given by Eq. (53) and the amplitude A 

and the inverse width B are 
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Naturally, the width of the Gausson proposes the 

constraint 

  0)()()(  ttt   

4. Conclusions 
 

This paper lists the soliton solutions to RNLSE that is 

studied with time-dependent coefficients and perturbation 

terms with full nonlinearity. The extended trial equation 

method extracts these soliton solutions to the model. Besides 

the constraint conditions that are needed for the existence of 

the solitons it is seen that an additional technical condition is 

needed, namely the Riemann integrability of the coefficient 

of GVD. Bright, dark and singular soliton solutions are 

obtained in this paper. The results are thus encouraging to 

study resonant solitons further in future. Later, this model 

will be addressed by the aid of different integration 

techniques such as extended trial equation method, modified 

simple equation method, semi-inverse variational principle, 

Lie symmetry and several others. The results of those 

research are surely going to be available down the road. 
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