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We present the Split-Step Fourier Method to analyze second and third order dispersion effects in optical fibers. The 
numerical method was used to simulate solitons propagation and their potential application in the high-speed transmission 
of information (Tbit/s). Its use in this type of systems is very useful but it is needed to make major changes in the system 
design.  In this paper the NLSESolver Program was used to simulate the soliton propagation.We also discuss higher order 
solitons that can be used for nonlinear pulse compression, but this lead to a critical choice of the pump wavelength. It is well 
known that a Sech-shaped pulse with a suitable energy, injected into an optical fiber with anomalous dispersion, can evolve 
as a higher-order soliton and after certain propagation distance the pulse duration can be substantially decreased. Higher 
order soliton can break up into fundamental soliton, process that can be used in supercontinuum generation in photonic 
crystal fibers with applications ranging from sensors, waveguide devices to lasers. 
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1. Introduction 
 
In the last 35 years numerous studies were reported 

about soliton propagation and their applications in 
nonlinear optics [1-8], DNA research [9], solar physics 
[10], and in other fields like particle physics, 
oceanography, mathematics [11,12] etc. 

It is well known that under certain conditions optical 
pulses can propagate inside fibers in the form of solitons. 
The use of soliton in optical communication was first 
mentioned in 1973 and in 1980 the optical solitons were 
first observed experimentally [1].  

Optical solitons are localized electromagnetic waves 
that propagate steadily in nonlinear media resulting from a 
robust balance between nonlinearity and linear broadening 
due to dispersion and/or diffraction [13,14].  

Optical fiber solitons are pulses of light which 
propagate without dispersion, even though the medium 
they are traveling through is naturally dispersive. Solitons 
in optical fibers are the result of the balance between the 
group velocity dispersion (GVD) and the self-phase 
modulation (SPM). GVD and SPM effects limit the 
performance of optical communications when acting 
independently on optical pulses propagating inside fibers 
[1]. The solution to solve the dispersion problem in high 
bit rate in optical communication systems is to use optical 
solitons-pulses that preserve their shape over long 
distances [15-17]. The propagation of soliton inside a fiber 
is well described by the nonlinear Schrödinger equation 
(NLSE) which is very hard to solve analytically, so there 

different numerical methods were introduced [1-4], [7]. 
Also there are other types of studies regarding the 
importance of numerical simulations in optical fibers and 
amplifiers [18-22]. 

In this paper we used the NLSESolver program in 
order to solve the nonlinear Schrödinger equations. These 
equations are derived from Maxwell’s equations for a 
nonlinear medium using paraxial approximation [5]. 

 
2. Theory 
 
Optical solitons can be described mathematically with 

the nonlinear Schrödinger equation (NLSE) [3]. This 
equation is given by:  
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where D̂  is the dispersion and absorption term and N̂ is 
an nonlinear operator: 
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In our simulations we will neglect the last two 

terms in N̂ , so that the equation reduces to: 
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where A (z,T) is the complex envelope of the pulse, T = t 
– β1z represents the normalized time, β1 the inverse of the 
group velocity, β2 is the quadric dispersion coefficient 
which is responsible for second order dispersion effects, β3 
is the cubic dispersion coefficient which is responsible for 
third order dispersion effects, α is the fiber loss coefficient 
and γ is the nonlinear parameter. The nonlinear parameter 
is defined as: 
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where n2 is the nonlinear-index coefficient, λ  is the 
optical wavelength, and Aeff is the fiber effective core area.  

If we consider that 0),( PTzAU = , where P0 is the 
peak value power of initial pulse, equation (4) can be 
written as follows: 
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where the intensity is defined as 
2UI = .  

The parameters used to analyze the soliton 
propagation in optical fibers are: 
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where LD is the dispersive length, LNL is the nonlinear 
length of the optical soliton, and T0 is the initial pulse 
length.  
 The soliton order (N) and the soliton period are 
defined as: 
 

2

2
002

β
γ TP

L
LN

NL

D == and 
2

2
0

2 β
π TT =            (8) 

 
 

3. Results 
  
 
In this paper we will use NLSE Solver program 

developed by Godvind P. Agrawal. As an input field we 
will consider that the shape of our pulse is defined as: 
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where C is the chirp parameter, which will be equal to zero 
in our case. 

For this type of pulses with T0 and P0 chosen in order 
to make N = 1 (first order soliton), the pulse will propagate 
without distortions on long distances. These types of 
solitons are attractive for optical communications systems. 
Figure 1 presents the simulation of the first order soliton 

with T0 = 3 s, β2 = - 20(s2/m), β3 = 0 s2/m, γ = 4 W-1m-1. P0 
= 0.5 W, and D = 4m, in order to make N = 1.  

 

 
 

Fig. 1. Evolution of the first order temporal soliton: a. 
without fiber losses α = 0 m-1; b. with fiber losses                      

α = 0.4 m-1 
 
Only the fundamental soliton (N=1) maintains its 

shape and remains chirp-free during its propagation inside 
optical fibers. This property makes the temporal soliton an 
ideal candidate for optical communications. The effects of 
fiber dispersion are exactly compensated by the fiber 
nonlinearity when the input pulse has a "sech" shape [16]. 
It is also known that optical solitons of first order are 
stable against perturbations. In soliton communication 
systems it is necessary to introduce an optical source 
capable to produce chirp free pico-second pulses at high 
repetition rates and to operate at wavelength 1.55 µm. 
Also there were papers that reported the use of mode-
locked semiconductor lasers, in soliton communication 
systems, with pulses of 12-18 ps and 40 Gb/s repetition 
rate [16].  

Two neighboring solitons should be separated and the 
spacing between them should exceed a few times their Full 
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Width at Half Maximum (FWHM). The bits near solitons 
perturb them because the combined optical field is not a 
solution of NLSE. If the separation between them is 
enough then the bit rate of the soliton communication 
system will drop. 

Another problem in optical communication systems is 
the losses of power due to fiber losses. This problem can 
be solved if amplifiers are introduced in the system. 

Pulses corresponding to other integer values of N 
represent higher-order temporal solitons. To obtain, for the 
same parameters, the second order soliton (N = 2) we must 
rise P0 to 1.12 W. Second order soliton evolution is 
presented in Fig. 2.  

 

 
 

Fig. 2. Evolution of the second order temporal soliton:  
a. without fiber losses α = 0 m-1; b. with fiber losses                  

α = 0.4 m-1 
 

In Fig. 2a, the second order soliton first compresses at 
the half period and then returns to the initial pulse shape at 
the full period if the loss of the optical fiber is neglected. 
In the case of soliton losses Fig. 2b, the second order 
soliton compresses less at the half period and it can not 
return to the initial pulse shape at the full period.  

For higher values of N the solitons exist and they are 
all periodic. Since high intensity is necessary to generate 
solitons, if the field increases its intensity even further the 
medium could be damaged. 

Figure 3 presents the evolution of the third order 
soliton (N = 3, P0 = 1.67 W) in optical fibers without loss 
(Fig. 3a) and with loss (Fig. 3b). 

Higher-order solitons can be used for nonlinear pulse 
compression which means that after some distance the 

pulse duration can be substantially decreased, but the 
choice of the pump wavelength will be critical. 

For each N >1, the higher order soliton is really a 
nonlinear superposition of N fundamental solitons. The 
energies are N2 higher than that of fundamental soliton. 
The higher order solitons, unlike the fundamental soliton, 
are not stable in the face of perturbations and they 
generally break up and are diverging into fundamental 
solitons. 

Figures 4 and 5 present a fifth order soliton that 
breaks-up during its propagation. In this case the 
simulation parameters are T0 = 3 s, β2 = - 2(s2/m),                    
β3 = 0 s2/m,  γ = 4 W-1m-1, P0 = 0.83 W, and D = 4 m in 
order to make N = 5. 

If we increase the order of the soliton we can see that 
the dispersion is higher and that the soliton splits in several 
parts. The soliton break-up play an essential role in the 
supercontinuum generation in photonic crystal fibers and 
in soliton fiber lasers. 

This break up effect, into diverging fundamental 
solitons, is due to the presence of absorption or to 
numerous additional nondissipative mechanisms. The 
break-up mechanism can be described as a result of the 
energy loss due to the nonlinear absorption. [13] 

 

 
 

Fig. 3. Evolution of the third order temporal soliton:              
a. without fiber losses α = 0 m-1;  b. with fiber losses               

α = 0.4 m-1 
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Fig. 4. Evolution of the fifth order temporal soliton: a. 
without fiber losses α = 0 m-1; b. projection of time vs. 

distance axes for a. case. 

 
Fig. 5. Evolution of the fifth order temporal soliton: a. 
with fiber losses α = 0.4 m-1; b. projection of time vs. 

distance axes for a. case. 

 
 

Fig. 6. Evolution of the eight order temporal soliton: a. 
without fiber losses α = 0 m-1; b. projection of time vs. 

distance axes for a. case. 
 

It was reported that the eight-order soliton (Fig. 6 and 
Fig. 7) can be obtained experimental by nonlinearly 
soliton compression of the chirp-compensated 
semiconductor optical amplifier fiber laser (SOAFL) pulse 
in a 112 m long single-mode fiber at an input peak power 
of 51 W, providing the pulse width, the line width, and the 
nearly transform-limited time-bandwidth product are <200 
fs, 13.8 nm, and 0.34, respectively [17].  

 

 
Fig. 7. Evolution of the eight order temporal soliton: a. 
without fiber losses α = 0 m-1; b. projection of time vs. 

distance axes for a. case. 
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The effects mentioned above where due to the second 
order dispersion. We can see that when β2 = 0, the 
oscillations are intense and the intensities drop down to 
zero. In this case the field intensity propagates linearly 
with the distance. When β2 has high values, the third order 
effects can be ignored and the intensity of the field drops 
down.  

 

 
 

Fig. 8. Evolution of the soliton with third order 
dispersion effect: a. β2= -2 s2/m; b. projection of time vs.  
                       distance axes for a) case. 
 
 
In the case of the third order effects β2 will be 

negligible and the third order dispersion effects will 
become relevant. If β3 is positive the oscillations will 
occur near the end of the pulse and if β3 is negative the end 
of the pulse will develop the oscillations. In the following 
simulation β2 = 0 (s2/m), β3 = -2 s2/m, γ = 1 W-1m-1 and           
P0 = 1W (Fig 8).  

We can see that though we didn’t introduce losses in 
our simulations, the third order dispersion coefficient 
introduces some losses during the propagation.  

 

 
 

Fig.9. Evolution of the: a. input and output profiles for 
β2= -2 s2/m; b. input and output profiles for β2= 2 s2/m .  
 

 
The input and the output profiles for this simulation 

are given in Fig. 9. We can see clearly that if β3 is positive 
oscillations will occur near the end of the pulse and if β3 is 
negative the end of the pulse will develop the oscillations. 

If we increase the gamma parameter, responsible for 
nonlinearities in optical fibers we can observe a high 
dispersion and attenuation of the initial pulse (Fig. 10). 

The third-order dispersion slows down the soliton and 
as a result, the soliton peak is delayed by an amount that 
increases linearly with distance. 

The Split-step Fourier method was used to numericaly 
solve the nonlinear Schrödinger equation, describing the 
soliton propagation with third-order dispersion. Our 
numerical simulation show that third order dispersion can 
change the behavior of soliton. This may cause the 
compresion of the initial pulse   in dispersion-shifted 
fibers. Also we can observe that the resultant soliton 
deviates more from its starting point. 
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Fig.10. Evolution of the soliton with third order 
dispersion   effect:  a.  for  β3 = -2 s2/m,  γ = 5 W-1m-1;  
     b. projection of time vs. distance axes for a. case; 

 
 

4. Conclusions 
 
In system design it is very important to develop 

studies on optical solitons and their evolution, using 
different numerical methods. NLSESolver Program was 
used to simulate the soliton propagation in optical fibers 
and analyze second and third order dispersion effects. 

Practical implementation of soliton has been a real 
challenge because of the higher bit rate and longer 
distances transmission demands.  

Temporal solitons are very attractive for optical 
communications because they are capable to maintain their 
shape even in the presence of fiber dispersion. Solitons 
application in communication systems opens the way to 
high-speed transmission of information (for first order 
soliton). Their use in this type of systems is very useful but 
major changes in system design are necessary to be made. 

Higher order soliton can break up into fundamental 
soliton, process that can be used in supercontinuum 
generation in photonic crystal fibers and in other novel 
applications, but the pump wavelength would be critical. 

It was shown that in the case of second order 
dispersion effects, for higher order soliton, the break-up 
into multiple parts occur and the soliton losses its energy. 
This process is resulting from the interplay of diffraction, 
dispersion and nonlinear effects. We observed that for 
third order effects the soliton deviates from the initial 
position and the peak is delayed.  
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