Synthesis and photoluminescence of Eu³⁺-doped LiZnVO₄ nanopowders

M. H. HUANG, T. H. FANG*, Y. C. FAN, M. H. LIN

Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan

The optical and structural properties of europium-doped lithium zinc vanadium oxide (LiZnVO4:xEu) nanopowders, synthesized via a solid-state reaction, were studied. X-ray diffraction indicates that a rhombohedral LiZnVO4 phase began to appear when annealing at 500°C. The bandgap energy of pure and Eu³⁺-doped LiZnVO4 was around 3.20 and 3.22 eV, respectively. The photoluminescence spectra of pure LiZnVO4 exhibit a strong emission peak at 526 nm when annealed at 600°C. For the Eu³⁺-doped LiZnVO4 samples, the new emission peaks appear at 618 nm as the concentration of Eu³⁺ ions increases. The intensity of the emission peaks at 618 nm increases due to the ⁵D₀ \rightarrow ⁷F₂ transition. The CIE (Commission International de l'Éclairage) color coordinates of LiZnVO4:xEu³⁺ (x = 0 mol%, 1 mol%, 3 mol%, 5 mol%, and 7 mol%) change from x = 0.262 and y = 0.457 to x = 0.264 and y = 0.437.

(Received June 19, 2020; accepted October 5, 2022)

Keywords Solid-state reaction method, Emission peaks, The bandgap energy

1. Introduction

Recently, oxide phosphor materials have been intensely studied mainly because of their higher chemical stability compared to sulfide phosphors [1-7]. Vanadium oxide materials have attracted a lot of attention due to their unique structure and optical and magnetic properties [1,5-7]. Vanadate compounds, such as LiZnVO₄, are widely found in electrochemical devices and sensors [5-10]. In addition, efficient optical materials doped with rare-earth ions are useful for various applications, e.g., display screens, light sources, and photonics devices [1,9,11-13]. Eu³⁺ ions are known to act as an activator center for luminescence phenomena [14]. Recently, Eu³⁺ materials have been actively studied because of the intra-4f-shell transitions from the excited energy level to the lower energy level ${}^{5}D_{0} \rightarrow {}^{7}F_{i}$ (j = 1, 2, 3, 4) [15-18]. Because the emission of Eu³⁺ doped materials is mainly at 610–630 nm, red light emission is observed in various glasses and crystals [19-26].

Synthetic LiZnVO₄ is an interesting material for oxide phosphors because its components are not as environmentally polluting as other compounds [27]. LiZnVO₄ materials are widely used in rechargeable Li-ion batteries, resonators, and humidity sensors. Lin et al. [28] used LiZnVO₄ particles as anode material in a rechargeable Li-ion battery; the electrochemical measurements showed that the anode possessed excellent cycling stability. Busuico et al. [8] found that LiZnVO₄ had excellent microwave dielectric properties in a resonator, and several reports [7,29-32] showed that LiZnVO₄ materials had remarkable sensitivity toward humidity and are widely used with doped gas-sensing components.

Several techniques have been reported for the synthesis of LiZnVO₄, including the sol-gel method [8], solvothermal techniques [33], and solid-state reactions [34]. Thus, there are many preliminary studies to explore whether it is an efficient phosphor host for luminescent materials. The rapid Vibro-milling method has been widely used for the preparation of various nanopowders due to its simplicity, low cost, and speed [35,36].

In this work, a fluorescent Eu^{3+} -doped LiZnVO₄ powder was prepared through a rapid Vibro-milling method. The crystal microstructure was analyzed by X-ray diffraction. The luminescence characteristics of the material were investigated. Furthermore, the influence of doping Eu^{3+} on the morphology, optical properties, and structure was evaluated.

2. Experiments

A rapid Vibro-milling method was used to synthesize Eu^{3+} -doped LiZnVO₄ powder. The raw materials included lithium carbonate (Li₂CO₃, 99%), vanadium oxide (V₂O₅, 99.6%), zinc oxide (ZnO, 99.9%) and europium oxide (Eu₂O₃, 99.9%, powder) for doping. The different proportions of the powders were obtained through vibration-milled for 9 hours. Then, the mixture was placed in a muffle furnace and the temperature was increased to 5°C per minute. The powders were calcined at 400°C, 500°C, 600°C, and 700°C, and maintained at that temperature for 3 hours. They were then allowed to cool inside the furnace, and Eu^{3+} -doped LiZnVO₄ was obtained.

The LiZnVO₄ and Eu³⁺ crystalline phases were determined by X-ray diffraction (XRD, Bruker D2 Phaser) irradiating with Cu K α radiation of a wavelength of 1.5419 Å in the range 10°≤2 θ ≤70°. The surface morphology and microstructure of the samples were evaluated via scanning electron microscopy (SEM, JSM-6330TF, JEOL). The excitation and emission spectra and the CIE color coordinate diagram (Commission International de l'Éclairage) were obtained using a photoluminescence (PL) spectrometer (Hitachi, F-4500). The absorption spectra were acquired by a UV-Vis spectrometer (Jasco, V-670).

3. Results and discussion

Fig. 1(a) shows the XRD patterns of pure LiZnVO₄ sintered at different calcining temperatures. A single LiZnVO₄ phase with a rhombohedral structure was observed above 500°C (JCPDS card no. 38–1332). The crystallinity degree of the powder calcined at 600°C was high. Fig. 1(b) presents the XRD patterns of LiZnVO₄ calcined at 600°C with different Eu³⁺ content. The sample doped with 1 mol% Eu³⁺ shows a secondary Eu(VO₄) phase with a tetragonal structure (JPCDS card no. 86–0995). No secondary phases were detected in the pure LiZnVO₄ sample. The LiZnVO₄ crystallinity decreases with increasing Eu³⁺ content, likely because of internal stress causing structural deformation [37].

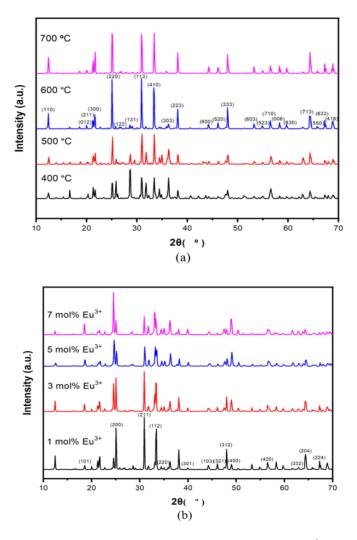
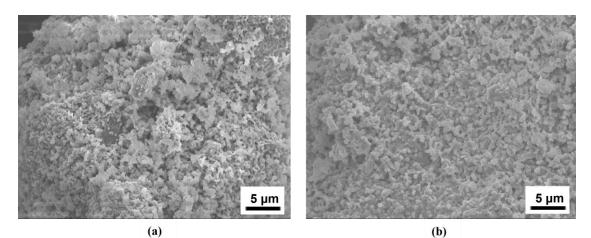


Fig. 1. (a) X-ray diffraction analysis of LiZnVO₄ at different annealed temperatures. (b) Eu^{3+} -doped LiZnVO₄ with increasing concentrations of Eu^{3+} annealed at 600°C (color online)

The average grain size diameter can be calculated from the full width at half maximum (FWHM) of a peak by applying Scherrer's formula [38]:


$$d = \frac{k\lambda}{\beta\cos\theta} \tag{1}$$

where k = 0.89 represents the Scherrer constant, λ represents the X-ray wavelength (1.5419 Å), β represents half the peak width, and θ represents the position of the peak [38].

The grain sizes of crystalline pure LiZnVO₄ annealed at 400°C, 500°C, 600°C, and 700°C are around 46.56, 48.53, 59.87, and 62.54 nm, respectively. When increasing the annealing temperature, the average size increased. LiZnVO₄ doped with 1 mol%, 3 mol%, 5 mol%, and 7 mol% Eu³⁺ annealed at 600°C showed grain sizes of around 60.70, 57.67, 45.86, and 52.31 nm, respectively. The average size decreased with the dopant content up to 5

mol%, then at 7 mol%, the grain size increased again.

Figs. 2(a)–(d) display the SEM images of pure LiZnVO₄ calcined at 400°C, 500°C, 600°C, and 700°C. The morphology of LiZnVO₄ changed depending on the calcination temperature. In Figs. 2(a) and (b), the particles and sizes seem to be evenly distributed. The higher sintering temperatures yield larger grains; i.e., as the sintering temperature increases, the particle size also increases. High temperatures may increase the atomic mobility leading to fast grain growth. Accordingly, Fig. 2(c) shows that, when calcined at 600°C, LiZnVO₄ particles are larger and there is more agglomeration than at lower temperatures. In Fig. 2(d), when the calcination temperature is 700°C, the particle size significantly increases.

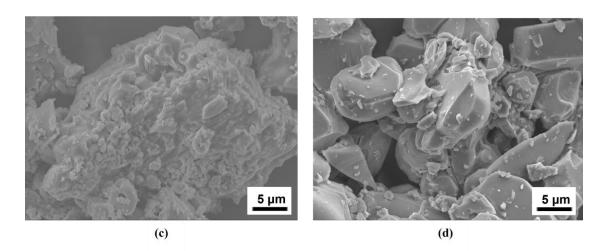


Fig. 2. SEM images of LiZnVO4 phosphors synthesized at different annealed temperatures: (a) 400°C, (b) 500°C, (c) 600°C, and (d) 700°C

Figs. 3(a)–(d) correspond to the SEM images of LiZnVO₄ doped with 1, 3, 5, and 7 mol% Eu^{3+} annealed at 600°C. The average size of the particles decreased with increasing Eu^{3+} concentration. Fig 3(a) shows that

 $LiZnVO_4$ doped with 1 mol% Eu^{3+} is very similar to pure $LiZnVO_4$ calcined at 600°C, which presents agglomeration and large particles. Figs. 3(b)–(d) show the surface morphology of Eu^{3+} -doped $LiZnVO_4$ is very similar.

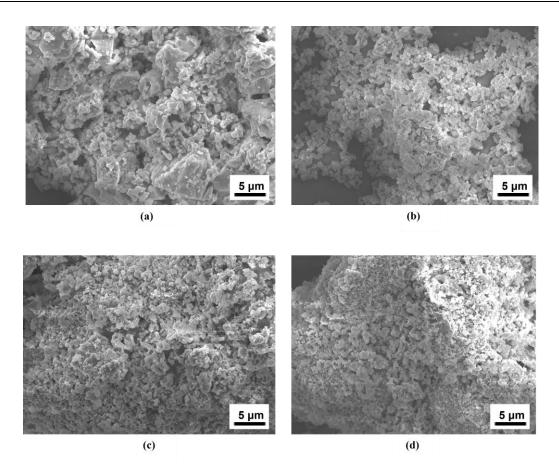


Fig. 3. SEM images of $LiZnVO_4:xEu^{3+}$, (a) $x = 1 \mod \%$, (b) 3 mol%, (c) 5 mol%, and (d) 7 mol% annealed at 600°C

Fig. 4 presents the absorption spectra of pure LiZnVO₄ and Eu³⁺-doped LiZnVO₄ annealed at 600°C. The 4f-4f transition absorption of Eu³⁺ is between 400 and 470 nm. The results of pure LiZnVO₄ are consistent with previous reports [39]. The additional absorption peaks at 467 and 536 nm are due to the transition from the ⁷F₀ ground state to the charge transfer state, i.e., the ⁷F₀→⁵D₂

and $^7F_0 \rightarrow {}^5D_1$ transitions, respectively [16,37]. As the concentration of Eu^{3+} increased in the doped samples, the $^7F_0 \rightarrow {}^5D_2$ peak slightly shifted to shorter wavelengths (blue-shift).

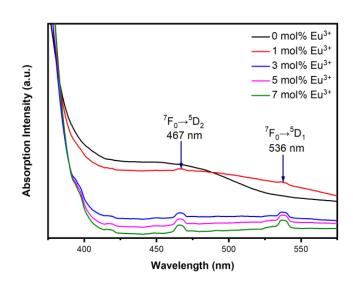


Fig. 4. Absorption spectra of pure LiZnVO₄, and LiZnVO₄:x Eu^{3+} (x = 0 mol%, 1 mol%, 3 mol%, 5 mol%, and 7 mol%) (color online)

Fig. 5 displays the calculated bandgap for pure- and Eu³⁺-doped LiZnVO₄, which was about 3.2 eV. This is consistent with the report by Chiu et al., where Eu³⁺-doped LiZnVO₄ was prepared via the sol-gel method [38]. In that work, the authors used the relationship between $(\alpha hv)^2$ and the photon energy *hv*:

$$\boldsymbol{\alpha} = \frac{\boldsymbol{C}(\boldsymbol{h}\boldsymbol{v} - \boldsymbol{E}_{\boldsymbol{g}})^{\frac{1}{2}}}{\boldsymbol{h}\boldsymbol{v}}$$
(2)

where α represents the absorption coefficient, *C* is a constant, and E_g is the bandgap energy [27]. The calculated Eu³⁺-doped LiZnVO₄ bandgap energy was 3.20–3.22 eV.

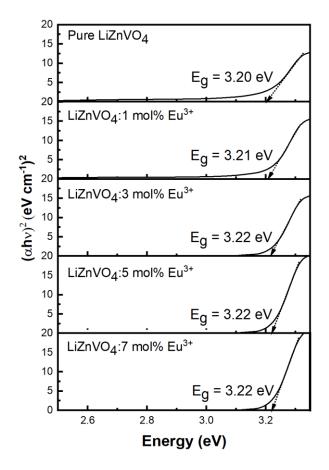
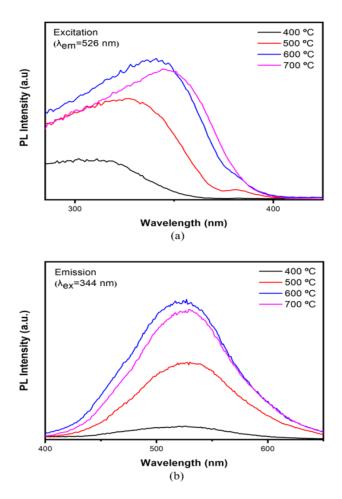



Fig. 5. Bandgap of LiZnVO4: xEu^{3+} (x = 0 mol%, 1 mol%, 3 mol%, 5 mol%, and 7 mol%) annealed at 600°C.

Figs. 6 (a) and (b) show the excitation and emission spectra of pure LiZnVO₄ calcined at 400°C, 500°C, 600°C, and 700°C. Compared to the other samples, pure LiZnVO₄ annealed at 600°C exhibits a higher emission intensity at 526 nm. The bluish-green light of pure LiZnVO₄ is due to the ${}^{3}T_{1}$ - ${}^{1}A_{1}$ transition at 526 nm, the main peak [39].

Fig. 6. (a) Excitation and (b) emission spectra of pure LiZnVO₄ annealed at 400°C, 500°C, 600°C, and 700 °C for 3 h (color online)

Figs. 7 (a) and (b) present the excitation and emission spectra of LiZnVO₄:xEu (x = 0 mol%, 1 mol%, 3 mol%, 5 mol%, and 7 mol%) annealed at 600°C. The main emission peak decreased as the concentration of Eu³⁺ increased. For the 5 mol% and 7 mol% Eu³⁺-doped LiZnVO₄ samples, the emission peak at 618 nm is due to the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition that initiated from charge transfer transitions from the VO₄³⁻ host to the Eu³⁺ ions [38].

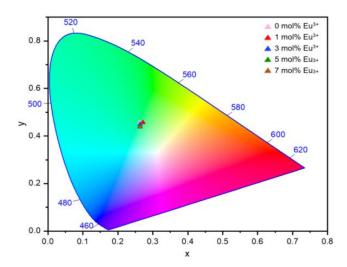


Fig. 7. (a) Excitation and (b) emission spectra of LiZnVO4:xEu (x = 0 mol%, 1 mol%, 3 mol%, 5 mol%, and 7 mol%)annealed at 600°C (color online)

The CIE color coordinates of the crystalline LiZnVO₄ doped with different concentrations of Eu³⁺ at $\lambda_{ex} = 344$ nm are shown in Fig. 8. When the amount of Eu³⁺ increased from 0 mol% to 7 mol%, the color coordinates change from x = 0.262 and y = 0.457 (yellow-green) to x = 0.264 and y = 0.437 (blue-green).

The luminescent characteristics of pure and Eu^{3+} -doped LiZnVO₄ were measured (Table 1). Compared with samples obtained by the sol-gel method [41], the

characteristics are very similar, except for the crystalline grain size of Eu^{3+} -doped LiZnVO₄, which was larger when using the solid-state method. However, the crystalline grain size of pure LiZnVO₄ remains the largest. Additionally, it is worth noting that the bandgap energy of pure LiZnVO₄ is very similar to that of Eu^{3+} -doped LiZnVO₄.

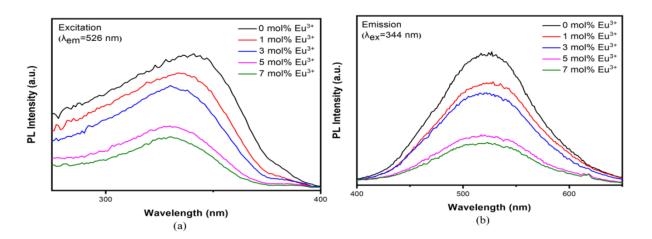


Fig. 8. CIE color coordinate diagram of $LiZnVO_4$: xEu^{3+} ($x = 0 \mod \%$, 1 mol%, 3 mol%, 5 mol%, and 7 mol%) (color online)

4. Conclusion

Eu³⁺-doped LiZnVO₄ was synthesized via a solid-state reaction. Single rhombohedric LiZnVO₄ crystalline structures were achieved. The crystallinity of the Eu³⁺-doped LiZnVO₄ particles decreases with increasing Eu³⁺ content. Also, as the concentration of Eu³⁺ increased, the ⁷F₀→⁵D₂ peak slightly shifted to shorter wavelengths (blue-shift). When comparing the

annealing temperatures, the pure LiZnVO₄ sample prepared at 600°C exhibits a higher emission intensity at 526 nm than the other samples. The absorption bandgap of Eu³⁺-doped LiZnVO₄ was about 3.20 eV. The CIE emission coordinates of the doped samples change from x = 0.262 and y = 0.457 (yellow-green) to x = 0.264 and y = 0.437 (blue-green) when the Eu³⁺ ions reach 7 mol%.

Compositi on	Method	Crystalline temperatu re	Crystalline grain size	CIE color coordinate s	A bandgap energy	The extra absorption peak	The emission peak (Wavelength nm)	a dielectric constant (ɛr)	Refere nce
LiZnVO ₄	Solid-state	600 °C	59.87 nm	-	3.20 eV		$526 \text{ nm} (\lambda \text{ex} = 344 \text{ nm})$		This study
Eu ³⁺ -doped LiZnVO ₄	Solid-state	600 °C	60.7 nm (1 mol% Eu ³⁺)	x = 0.262, y = 0.457	3.21 eV	467 nm and 536 nm	526 nm (λex = 344 nm)		This study
LiZnVO ₄	Sol-gol	600 °C	58 nm	-	3.10 eV	-	$529 \text{ nm} (\lambda ex = 325 \text{ nm})$		[38]
Eu ³⁺ -doped LiZnVO ₄	Sol-gol	600 °C	73.2 nm (1 mol% Eu ³⁺)	x = 0.317, y = 0.423	-	466 nm and 538 nm	$529 \text{ nm} (\lambda \text{ex} = 325 \text{ nm})$		[38]
LiZnVO ₄	Solid-state	700 °C	-	-	-	-	$560 \text{ nm} (\lambda \text{ex} = 340 \text{ nm})$	7.5	[8]
LiZnVO ₄	Sol-gel	600 °C	-	-	-	-	560 nm (λex = 340 nm)	6.8	[8]
LiZnVO ₄	Sol-gel combustion	600 °C	-	x = 0.31, y = 0.41	-	-	543 nm ($\lambda ex = 375$ nm)		[40]
LiZnVO ₄	Combustio n	600 °C	41 nm	-	3.23 eV	-	550 nm (λex = 270 nm)		[41]

Table 1. Comparison of pure and Eu^{3+} -doped LiZnVO₄ performance.

Acknowledgments

This study was financially supported by the Ministry of Science and Technology (MOST), Taiwan, under Grant MOST 109-2622-E-992-011-CC3 and MOST 108CP01.

References

- B. K. Grandhe, S. Ramaprabhu, S. Buddhudu, K. Sivaiah, V. R. Bani, K. Jang, Opt. Commun. 285, 1194 (2012).
- [2] Y. S. Chang, H. J. Lin, Y. L. Chai, Y. C. Li, J. Alloys Compd. 460, 421 (2008).
- [3] I. Gupta, S. Singh, S. Bhagwan, D. Singh, Ceram. Int. 47, 19282 (2021).
- [4] S. K. Gupta, K. Sudarshan, R. M. Kadam, Mater. Today Commun. 27, 102277 (2021).
- [5] T. L. Soundarya, Udayabhanu, Y. T. Ravikiran, B. Nirmala, G. Nagaraju, J. Mater. Sci.: Mater. Electron. 33, 10902 (2022).
- [6] T. Uyama, K. Mukai, Mater. Today Energy 14, 100331 (2019).
- [7] T. L. Soundarya, B. Nirmala, F. A. Alharthi,
 B. Nagaraj, G. Nagaraju, Mater. Sci. Eng., B 280, 115718 (2022).
- [8] C. Busuioc, S. I. Jinga,
 J. Optoelectron. Adv. M. 15(11-12), 1470 (2013).
- [9] B. Yan, X.Q. Su, J. Non-Cryst. Solids 352, 3275 (2006).
- [10] T. Uyama, K. Mukai, I. Yamada, Inorg. Chem. 59, 777 (2020).
- [11] T. N. L. Tran, A. Szczurek, S. Varas, C. Armellini, F. Scotognella, A. Chiasera, M. Ferrari, G. C. Righini, A. Lukowiak, Opt. Mater. 124, 111978 (2022).

- [12] C. B. de Araújo, L. R. P. Kassab, D. M. da Silva, Opt. Mater. 131, 112648 (2022).
- [13] Y. Tayal, A. S. Rao, Opt. Mater. 117, 111112 (2021).
- [14] J. Wang, H. Hong, X. Kong, H. Peng, B. Sun,
 B. Chen, J. Zhang, W. Xu, H. Xia, J. Appl. Phys.
 93, 1482 (2003).
- [15] K. B. Kim, K. W. Koo, T. Y Cho, H. G. Chun, Mater. Chem. Phys. 80, 682 (2003).
- [16] Y. Wang, T. Endo, E. Xie, D. He, B. Liu, Microelectron. J. 35, 357 (2004).
- [17] M. H. Huang, T. H. Fang, M. H. Lin, C. W. Chang, Y. C. Fan, Sens. Mater. **32**, 809 (2020).
- [18] Z. W. Chiu, Y. J. Hsiao, T. H. Fang, L. W. Ji, Int. J. Electrochem. Sci. 10, 2391 (2015).
- [19] T. H. Fang, Y. S. Chang, L. W. Ji, S. D. Prior, W. Water, K. J. Chen, C. F. Fang, J. Phys. Chem. Solids **70**, 1015 (2009).
- [20] Y. J. Hsiao, Y. S. Chang, Y. H. Chang, Mater. Chem. Phys. 100, 418 (2006).
- [21] Z. Wang, D. Yuan, D. Xu, M. Lv, X. Cheng,
 L. Pan, X. Shi, J. Cryst. Growth 255, 348 (2003).
- [22] L. Tian, B. Y. Yu, C. H. Pyun, H. L. Park,S. I. Mho, Solid State Commun. **129**, 43 (2004).
- [23] W. Zhang, Y. Chen, X. Geng, Y. Yang, L. Xiao, J. Lumin. 224, 117324 (2020).
- [24] S. Wang, Y. Xu, T. Chen, W. Jiang, J. Liu, X. Zhang, W. Jiang, L. Wang, Chem. Eng. J. 404, 125912 (2021).
- [25] Y. Zhang, M. Ruan, Q. Zhou, X. Mu, J. Du, E. Xie, Y. Sheng, Z. Zhang,
- J. Optoelectron. Adv. M. **20**(11-12), 642 (2018).
- [26] M. Chang, Y. Song, Y. Sheng, J. Chen, H. Zou, Phys. Chem. Chem. Phys. **19**(26), 17063 (2017).
- [27] S. Neeraj, N. Kijima, A. K. Cheetham, Solid State Commun. 131, 65 (2004).
- [28] Y. Lin, F. Xiao, S. Gao, Ionics 19, 391 (2013).
- [29] S. Hua, G. Fu, Sens. Actuators, A 163, 481 (2010).

- [30] G. Fu, H. Chen, Z. Chen, J. Zhang, H. Kohler, Sens. Actuators, B 81, 318 (2002).
- [31] S. Hu, H. Chen, G. Fu, F. Meng, Sens. Actuators B 134, 769 (2008).
- [32] G. Fu, H. Chen, S. Hu, Z. Liu, Sens. Actuators B 137, 17 (2009).
- [33] Y. Lee, J. Chae, M. Kang, J. Ind. Eng. Chem. 16, 609 (2010).
- [34] C. H. Lu, C.T. Chen, J. Sol-Gel Sci. Technol. 43, 179 (2007).
- [35] R. Wongmaneerung, W. Chaisan, O. Khamman, R. Yimnirun, S. Ananta, Ceram. Int. 34, 813 (2008).
- [36] O. Khamman, R. Wongmaneerung, W. Chaisan, R. Yimnirun, S. Ananta, J. Alloys Compd. 456, 492 (2008).

- [37] M. H. Huang, M. H. Lin, T. H. Fang, C. W. Chang, Mater. Res. Express 5, (2018).
- [38] Z. W. Chiu, Y. J. Hsiao, T. H. Fang, L. W. Ji, J. Sol-Gel Sci. Technol. 69, 299 (2014).
- [39] Y. J. Hsiao, Y. L. Chai, L. W. Ji, T. H. Fang, T. H. Meen, J. K. Tsai, K. L. Chen, S. D. Prior, Mater. Lett. **70**, 163 (2012).
- [40] N. Pathak, S. K. Gupta, A. Prince, R. M. Kadam, V. Natarajan, J. Mol. Struct. **121**, 1056 (2014).
- [41] S. Khursheed, V. Kumar, J. Sharma, Mater. Focus 5, 485 (2016).

*Corresponding author: fang@nkust.edu.tw