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We demonstrate the quantum entanglement of the entangled biphotons generated by type II spontaneous parametric down-

conversion(SPDC) through a nonlinear crystal with phase-matching conditions. We find that the shorter crystal length, makes 

the main mode be more obvious in the discrete Schmidt modes, and also the corresponding eigenvalues, Weight, and Schmidt 

Numbers. Hence, shortening of the length of the crystal can further simplify the selection of modes, slightly increase the 

frequency response range of the down-conversion process, and compress the temporal width of the pulse. Our research is 

helpful to generate the ultrashort entanglement biphotons in nonlinear optics. 
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1. Introduction 

 

Quantum entanglement is a core physical concept in 

quantum mechanics, which is unique in the nonclassical 

physics. It plays a fundamental and important role in 

quantum optics, and it has a wide range applications in 

quantum teleportation [1,2], quantum cryptography[3] and 

other related aspects. 

There are many methods to generate entanglement, and 

one of the easiest and most effective methods is the 

entangled biphotons generated by spontaneous parametric 

down conversion(SPDC) process. In this process, the pump 

light (with frequency 𝜔𝑝 ) is incident into a nonlinear 

crystal, and split into two lower frequency photons named 

as signal photon(with frequency 𝜔𝑠) and idler photon(with 

frequency 𝜔𝑖 ). This process is promoted by the second-

order nonlinear effect which is caused by the interaction 

between the pump light and the nonlinear crystal [4]. These 

two photons are spontaneously and simultaneously 

generated with a high degree of correlation and 

entanglement [5,6]. The degree of entanglement can be 

effectively improved when energy conservation or 

momentum conservation is satisfied between the pump, 

signal and idler photons involved in SPDC [7]. These 

entanglements show many degrees of freedom, including 

spatial, frequency and polarization [8-13]. These are 

tunable entangled physical quantities in the spectral and 

time domains, such as wave vectors, transverse and orbital 

angular momentum entanglements [11,14,15]. They can be 

modulated as Hilbert space degrees of freedom. When a 

certain quantity is chosen to distinguish the biphoton system, 

another physical quantity can describe the corresponding 

biphoton state [7,16,17]. Among the various degrees of 

freedom for entanglements, polarization is a relatively 

simple one, which is conducive to a more profound 

understanding of the properties of entanglement. The 

entanglement of biphotons can be described and 

investigated by the two-dimensional Hilbert space in the 

direction of polarization generated by SPDC. It also 

includes defining and modulating entropy [9,18]. 

Meanwhile, the Schmidt decomposition enables further 

exploration entanglement of the spectral, correlation and 

other properties of the biphotons generated with multimode 

compression, and it is also an important theoretical 

analytical tool for multimode entanglement. The 

entanglement of biphotons generated by SPDC is closely 

related to the type of the down conversion, the crystal length, 

the pump envelope function, and other related parameters 

in a higher-dimensional system [10,19-22]. 

In general, the spectral response frequency range 

would be broadened and the entanglement would be 

enhanced as the crystal length decreases. In order to further 
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verify the validity of these conclusions, we explore the 

influence of crystal length on the properties of Schmidt 

modes and entanglement involved in the process of SPDC 

in nonlinear crystals. 

In this paper, we mainly discuss how the polarization 

entanglement of biphotons generated by SPDC is affected 

by the crystal length, and how the effective modulation of 

entanglement can be achieved by the crystal length. 

Meanwhile, we analyze the Schmidt modes in discrete 

modes by the Schmidt decomposition according to the 

Ref.10 and discuss the distribution of eigenvalues and 

entropy, specifically discussing the modulation effect of the 

crystal length on the eigenvalues. 

 

2. Theory for Schmidt decomposition 

 

In the SPDC, the pump light incidents into the crystal 

and splits into two lower frequency entangled photons, and 

the state function can be generally expressed as follows 

[23,24]: 

 

|𝑏𝑖⟩ = ∫𝐹(𝜔𝑠, 𝜔𝑖)𝑎𝑠
†(𝜔𝑠)𝑎𝑖

†(𝜔𝑖)|0⟩𝑠|0⟩𝑖𝑑𝜔𝑠𝑑𝜔𝑖() 

 

where 𝑎𝜇
†

 and 𝑎𝜇  are the creation and annihilation 

operators. |0⟩𝜇  are the vacuum state for the signal and 

idler photons. μ represents the signal and idler photons. 

F(𝜔𝑠, 𝜔𝑖) is the joint spectral amplitude function with the 

signal frequency 𝜔𝑠 and idler frequency 𝜔𝑖. This function 

represents the interaction between the three-mixed waves 

and the nonlinear crystal. It can be expressed as the product 

of the pump envelope function χ(𝜔𝑠, 𝜔𝑖) and the phase-

matching function ϕ(𝜔𝑠, 𝜔𝑖): 

 

F(𝜔𝑠, 𝜔𝑖) = 𝜂𝜒(𝜔𝑠, 𝜔𝑖)𝜙(𝜔𝑠, 𝜔𝑖)          (2) 

 

where η  is a normalized constant to satisfy the 

normalization condition ∫|𝐹(𝜔𝑠 , 𝜔𝑖)|
2𝑑𝜔𝑠𝑑𝜔𝑖 = 1 |. The 

pump envelope function can be a Gaussian which expressed 

as follows: 

 

χ(𝜔𝑠, 𝜔𝑖) ∼ 𝑒𝑥𝑝 [−
(𝜔𝑠+𝜔𝑖−𝜔𝑝)

2

2𝜎𝑝
2 ]         (3) 

 

Δk is the wave-vector mismatching for the three mixed 

waves in the crystal. σ is the bandwidth of pump photon. 

The phase matching function ϕ(𝜔𝑠, 𝜔𝑖) for the nonlinear 

crystal can make the three-mixed waves and the crystal 

phase matched. And in this paper it can be expressed as a 

sinc function for the phase matching [10].  

 

ϕ(𝜔𝑠, 𝜔𝑖) = 𝑠𝑖𝑛𝑐 [
Δ𝑘(𝜔𝑠,ω𝑖)𝐿

2
]          (4) 

 

The phase matching function is associated with phase 

mismatching Δk and the crystal length L. Especially, the 

Δk shows the relationship for the wave vectors among the 

three waves and satisfies the relationship as follows: 

 

Δk = 𝑘𝑝 − 𝑘𝑠 − 𝑘𝑖 ≃ ∑ (𝜔𝜇 − 𝜔0)(𝑘′𝑝 − 𝑘′𝜇)𝜇    (5) 

 

where 𝑘′𝜇 denotes the reciprocal of the group velocity for 

the signal or the idler photon. This equation is the exact 

representation and first order approximation of the phase 

matching function. In this paper, with the help of Schmidt 

decomposition, the continuous spectrum for the biphotons 

can be discretized into the discrete modes according to the 

method in Ref.[10,25]. After converting the continuous 

spectrum of biphotons, it is more convenient to analyze the 

structure, eigenvalues and entropy distributions of their 

discrete modes, and to discuss the modulation effect of the 

crystal length on the discrete entanglement of the biphotons 

during the SPDC. 

As expressed by Eq.(1), if the two photons are 

independent without any frequency correlation, the joint 

spectral amplitude function F(𝜔𝑠, 𝜔𝑖) is factorizable and 

the biphotons state has no entanglement in frequency 

domain for the reason that there is no one-to-one relation 

between the signal and idler frequency. When the joint 

spectral amplitude function cannot be factorized in the form 

of 𝜔𝑠 and 𝜔𝑖, we can say that the biphotons state |𝑏𝑖⟩ is 

entangled in the frequency domain[10]. The correlation 

between the signal and idler photons can be expressed by 

the joint spectral amplitude function, whose square 

modulus represents the probability. And this function is 

determined by the interaction between the three mixed 

waves and the nonlinear crystal. 
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In order to further explore the entanglement properties 

between them, the continuous modes in Eq.(1) can be 

transformed by discrete modes by Schmidt decomposition. 

When the joint spectral amplitude function F(𝜔𝑠, 𝜔𝑖) in 

Eq.(1) cannot be factorized into the product of 𝜔𝑠 and 𝜔𝑖, 

it implies that there is entanglement between the two 

photons[10,26]. Hence, the joint spectral amplitude 

function F(𝜔𝑠, 𝜔𝑖)  can be decomposed by Schmidt 

decomposition and the corresponding eigenbasis is 

obtained as follows: 

 

F(𝜔𝑠, 𝜔𝑖) = ∑ √𝜆𝑛𝑢𝑛(𝜔𝑠)𝑣𝑛(𝜔𝑖)
∞
𝑛=1         (6) 

 

where √𝜆𝑛  is the eigenvalue of the eigenfunction, n =

1,2, … are the positive integer and satisfy the normalization 

condition. Orthogonal functions 𝑢𝑛(𝜔𝑠) and 𝑣𝑛(𝜔𝑖) are 

conjugate Schmidt modes. They are the eigenfunctions for 

the integral equations shown as follows [10,27]: 

 

∫𝐹(𝜔1, 𝜔2)𝑣𝑛
∗(𝜔2)𝑑𝜔2 = √𝜆𝑛𝑢𝑛(𝜔1)       (7) 

 

∫𝑢𝑛
∗ (𝜔1)𝐹(𝜔1, 𝜔2)𝑑𝜔1 = √𝜆𝑛𝑣𝑛(𝜔2)       (8) 

 

Or written as: 

 

∬𝐹(𝜔,𝜔1)𝐹
∗(𝜔′, 𝜔1)𝑣𝑛(𝜔′)𝑑𝜔1𝑑𝜔′ =

∫ 𝜌1(𝜔, 𝜔′)𝑢𝑛(𝜔′)𝑑𝜔′                          (9) 

 

∬𝐹(𝜔2, 𝜔)𝐹
∗(𝜔2, 𝜔′)𝑢𝑛(𝜔′)𝑑𝜔2𝑑𝜔′ =

∫ 𝜌2(𝜔, 𝜔′)𝑣𝑛(𝜔′)𝑑𝜔′                         (10) 

 

where 𝜌1  and 𝜌2  are the kernels for the one photon 

spectral correlations, and they satisfy 𝜌1(𝜔, 𝜔′) =

∫𝐹(𝜔,𝜔2)𝐹
∗(𝜔′, 𝜔2)𝑑𝜔2 ， 𝜌2(𝜔, 𝜔′) =

∫𝐹(𝜔1, 𝜔)𝐹
∗(𝜔1, 𝜔′)𝑑𝜔1. 𝑢𝑛 and 𝑣𝑛  can be viewed as 

the eignenfunctions for these kernels: 

 

∫𝜌1(𝜔, 𝜔′)𝑢𝑛(𝜔′) 𝑑𝜔
′ = 𝜆𝑛𝑢𝑛(𝜔)        (11) 

 

∫𝜌2(𝜔, 𝜔′)𝑣𝑛(𝜔′)𝑑𝜔′ = 𝜆𝑛𝑣𝑛(𝜔)       (12) 

 

The two eigenfunctions satisfies orthogonality relation: 

 

∫𝑢𝑚
∗ (𝜔1)𝑣𝑛(𝜔1)𝑑𝜔1 = 𝛿𝑚,𝑛         (13) 

 

Eqs.(7) and (11) both define the Schmidt modes from 

different perspectives, and they are almost equivalent to 

each other. The only difference is that the phase of the 

Schmidt modes cannot be controlled by the reduced density 

matrix, and it is necessary to incorporate the corresponding 

arbitrary phase factor exp(𝑖𝜗𝑢𝑣) to satisfy the relational 

equation of Eq.(11). Phase modulation is performed 

according to θ, where the simplest case is to take θ = 0 

and θ = π  to denote the symmetric and antisymmetric 

cases, but Eq.(7) is not invariant with the addition of an 

arbitrary phase factor, and therefore when Eq.(7) is chosen 

to define the Schmidt modes, their phase factors are 

determined[27]. 

For individual non-zero eigenvalues, this means that 

there is entanglement between their corresponding Schmidt 

modes. For modes that are entangled with each other, when 

one of them is detected with a certain probability, the other 

will also be detected with a certain probability and satisfy 

the eigenvalue ∑𝜆𝑛 = 1. 

The Schmidt decomposition is a good method for 

entanglement determination and provides the 

corresponding distribution of Schmidt mode particles, 

which also implies that in the pure state, the biphotons state 

can be detected correspondingly by pairing the Schmidt 

modes, while at the same time, for the same n, another 

particle under its conjugate mode 𝑣𝑛 can be detected with 

a certain probability, and therefore the probability of 

detecting the corresponding entangled biphotons state in the 

mode {𝑢𝑛, 𝑣𝑛}  is determined by the corresponding 

eigenvalue 𝜆𝑛. 

 

3. Results and discussions 

 

We selected the parameters as shown in Ref.[10], and 

obtain the joint spectral intensity as shown in Fig. 1. The 

crystal lengths in Fig. 1(a) and (b) are L = 0.001m and 

L = 0.002m, respectively. And the corresponding spectral 

power distributions have stronger spectral correlations 

when L = 0.001m . As the crystal length increases, the 

strength of the spectral correlation gradually decreases. The 

shorter of the crystal length, the wider of the spectral 

frequency response range with the phase-matching 
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condition, which matches the expectation that the width of 

the spectral response frequency is inversely proportional to 

the crystal length. 

 

 

 

Fig. 1. Spectral power distributions for nonlinear crystal with lengths 𝐿 = (a).0.001 m and (b).0.002 m. The ∆𝜔𝑠,𝑖 in the 

horizontal and vertical coordinates denote 𝜔𝑠,𝑖 −𝜔0 and are in 𝜎, respectively. The shorter the crystal length, the stronger the 

corresponding spectral amplitude and wider the frequency response range (color online) 

 

According to the eigenfunctions in continuous modes, 

they can be calculated by numerical simulation of the 

factorizable discrete matrices, and the eigenstates and the 

eigenvalues, can be obtained by Schmidt decomposition. 

When the joint spectral amplitude function is decomposed 

by Schmidt decomposition, the corresponding Schmidt 

modes are similar to that of a resonator. The number of 

wave peaks will increase and oscillates will be more 

violently with the increase of the mode n. 

Especially when the crystal L = 0.002m , the 

oscillation of its boundary is more intense. Meanwhile, 

when the correlation of the spectral power in Fig.1 is 

compressed, the waveforms distribution of the 

corresponding modes is compressed, which also makes the 

peaks of their waveform distributions become larger in the 

same mode. When focusing on the n = 1,2,3 modes, the 

corresponding Schmidt modes are shown in Fig.2. And they 

are similar to the modes of the resonator [10], which have a 

similar structure when we perform the Fourier transform on 

each of them to obtain the distributions in the time domain, 

and the oscillations of the modes are intensified as the 

number of modes increases. In this figure, it can be found 

by comparison that for the same n, the distribution of 𝑢𝑛 

and 𝑣𝑛 mode has similarity, but not completely symmetric, 

the main reason is that this is a type II parametric 

conversion, the asymmetric phase matching function 

determines the distribution of modes cannot be realized 

completely symmetric as well. 

In order to compare the phase distributions of each 

mode, we select the eigenvalue distributions for different 

crystal lengths as shown in Fig.3(a). It can be found that 

n = 1 accounts for a larger proportion of all √𝜆𝑛  when 

the crystal length is shorter. As a result, the phase matching 

is much better at this crystal length, resulting in a greater 

concentration of multiple modes in the n = 1  mode, 

which therefore has a much higher probability than the 

other modes. The shorter of the crystal length L, the higher 

value of the state occupied by the eigenvalues of the first 

few of them, i.e. the higher degree of entanglement and the 

state vector can be represented efficiently in a space with 

lower dimensions. 
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Fig. 2. The distribution of the modes of the Schmidt modes at the main (taking 𝑛 = 1,2,3) obtained by the Schmidt 

decomposition is also the distribution of the Schmidt states of the frequency-domain content in Fig. 1 (color online) 

 

 

 

Fig. 3. Distribution of eigenvalues 𝜆𝑛 and corresponding entropies obtained after Schmidt decomposition at different lengths of 

nonlinear crystals (color online) 
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Similarly, according to the definition in Ref.[10], the 

probability distribution in each mode can be transformed 

into the distribution of the corresponding entropy.  

The entanglement entropy can be defined as: 

 

𝑆𝐸 = −∑ 𝜆𝑘𝑙𝑜𝑔2𝜆𝑘
𝑛
𝑘=1               (14) 

 

As the crystal length increases, the probability 

distributions of the individual modes tend to stabilize, 

which results in a larger entropy value. As shown in 

Fig.3(b), the change of the front entropy is more drastic 

when the crystal length L is small. As n increases, the 

entropy values in different cases stabilize. But for the same 

n, a longer crystal length increases the entropy value, which 

is also due to the effect of phase matching. According to the 

distribution of eigenvalues converges to 0 when n → ∞, so 

the entanglement entropy also converges to a specific value 

when n → ∞, and the speed of convergence as well as the 

size of the convergence value is closely related to the 

distribution of the first few eigenvalues. The shorter of the 

crystal length L, the slower its entropy increases, 

corresponding to the proportion contributed under the first 

few eigenvalues, but in any case the convergence of the 

eigenvalues and entanglement entropy is satisfied in such 

cases. In order to facilitate the discussion, we concentrate 

calculate them in the spatial modes of lower dimensions. 

On the basis of the above discussion, we introduce the 

weight function[23]: 

Λ𝑛 =
[𝑠𝑖𝑛ℎ(𝐺√𝜆𝑛)]

2

∑ [𝑠𝑖𝑛ℎ(𝐺√𝜆𝑛)]
2

𝑛

              (15) 

 

where G is parametric gain. And based on this, we obtain 

the corresponding value of K[21,23,28,29]:  

 

K =
1

∑ Λ𝑛
2

𝑛
                (16) 

 

 

 

Fig. 4. Schmidt eigenvalues for nonlinear crystal lengths 𝐿 = 0.001𝑚 and 𝐿 = 0.002𝑚 of (a) Weight with G=1 and (b) Schmidt 

number 𝐾 versus parametric gain G (color online) 

 

It represents an estimate of the overall distribution of 

the eigenvalues obtained from the spatial model and can 

also be used to represent the average of the effective 

dimensions of the system. As shown in Fig.4 (a), for L =

0.001m , the Weight is more proportionally larger for 

smaller n such as n = 1,2. We can focus on the first 2 

modes because they have higher probabilities. For the case 

of the first mode n = 1, the proportion occupied at n = 1 

is particularly prominent when the crystal length is shorter, 

and the Weight is more stable with increasing n. As the 

crystal length increases, the probability distribution of each 

mode is flatter, which is also indicated by the K  value 

distribution in Fig.4(b). 

According to the characteristics of the Schmidt 

eigenvalue 𝜆𝑛 , since the eigenvalue in n = 1 is largest, 

i.e., the probability of the corresponding mode is highest in 

each mode. Therefore, we concentrate on n = 1  mode. 

Based on the characteristics of the frequency domain 

distribution in this mode, we convert it into a time domain 

distribution by the Fourier transformation: 

 

𝑈𝑛(𝑡)~∫ 𝑢𝑛(𝜔)𝑒
𝑖𝜔𝑡𝑑𝜔           (17) 
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Although, a pulse with a broad frequency bandwidth 

does not necessarily lead to a narrow temporal width. It can 

be theoretically predicted that the shorter temporal width 

pulse can be obtained in the shorter crystal length due to the 

Fourier transformation with wider frequency band. By 

comparison in Fig.5, it can be found that the temporal width 

is well compressed when the crystal length L = 0.001m, 

and the full width at half maxima(FWHM) is compressed 

from 0.332 ps when L = 0.002m to 0.174 ps when L =

0.001m. The temporal width is compressed nearly at a half, 

which is a good compression effect. Similarly, for the 

temporal distribution plot at n = 2, as shown in Fig. 5(b), 

also the pulse width is narrower when the crystal L =

0.001m, and its compression effect can be applied to the 

case of a double-peak pulse[30]. 

 

 

 

 

Fig. 5. Time-domain distributions of Schmidt modes for (a) 𝑛 = 1 and (b) 𝑛 = 2 with the nonlinear crystal lengths 

 𝐿 = 0.001𝑚 and 𝐿 = 0.002𝑚 (color online) 

 

4. Conclusion 

 

We demonstrate the modulation effect of the crystal 

length on quantum entanglement of the entangled biphotons 

generated by SPDC through a nonlinear crystal with phase-

matching conditions. In particular, the conversion of a 

continuous integral function into a pair of discrete finite 

modes is discussed, which can detect the characteristics of 

the entanglement more accurately. Through the numerical 

analysis we find that the shorter of the crystal length, the 

more obvious the role of the main mode in the discrete 

Schmidt modes, and the more dominant of the 

corresponding eigenvalues, Weight, and Schmidt Numbers. 

Hence, shortening of the length of the crystal can further 

simplify the selection of modes, slightly increase the 

frequency response range of the down-conversion process, 

and compress the temporal width of the pulses with the 

Fourier transformation. We hope our research will 

contribute to pulse compression with high entanglement. 
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