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An estimation of material dispersion is presented in some types of glass optical fibres. Using broadly applicable principles for 
group velocity, a simple expression is derived for material dispersion that includes the third derivative of the index of 
refraction with respect to the wavelength, 3 3/d n dλ . It is shown that material dispersion persists around the so-called zero 
material dispersion wavelength when 2 2/ 0d n dλ = , meaning that a pulse of light centred on this zero material dispersion 
wavelength also suffers significant dispersion, necessitating that the third order term 3 3/d n dλ  be taken into account.  
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1. Introduction 
 
The broadening of light pulses caused by dispersion is 

a critical factor that limits the quality of signal 
transmission over optical links. Fundamentals about this 
topic, presented simply and illustrated by numerous 
examples, can be found in [1, 2]. Much research has been 
focused on theoretical investigations of the pulse 
broadening and the information-carrying capacity of 
multimode glass optical fibres [3-5]. The broadening and 
deformation of the light pulse in optical fibres has also 
been the subject of experimental measurements [6]. An 
important component of delay distortion in fibre-optic 
waveguides is produced by wavelength dispersion of the 
refractive index. Material dispersion is a delay-time 
dispersion caused by the fact that the refractive index of 
glass changes in accordance with the change of the signal 
frequency (or wavelength). The dependence of refractive 
indices of core and cladding on the frequency for optical 
fiber is nonlinear. This nonlinearity of the refractive index 
causes a non zero value for 2 2/d n dω . This material 
dispersion effect is characterized by the parameter M  
given by [7] 

2

2

d n
M

c d

λ

λ
= ,              (1) 

where λ  is the wavelength of light in vacuum, n  is the 
refractive index, and c  is the speed of light. In general, 

( )M λ  decreases rapidly in air and usually changes sign 
at some crossover wavelength 0λ . A review of literature 
reveals that much research effort (for example [8,9]) has 
focused on the computational simulation and modelling 
dispersion in optical fibres. However, there are only a few 
studies that have reported about material dispersion around 
the so-called zero material dispersion (ZMD) wavelengths 

cλ  when the second derivative of the index of refraction 
with respect to the wavelength is zero 2 2/ 0d n dλ = . The 
purpose of this paper is to model the material dispersion in 
context of the pulse distortion caused by effects of the term 

3 3/d n dλ . Such modelling is based on the assumption that 
the refractive index of glass and plastic optical fibres 
follows a three-term Sellmeir’s function of wavelength. For 
operation around ZMD wavelengths in the glass optical 
fibres, results show that even as 2 2/ 0d n dλ = , the 
material dispersion still occurs caused by effects of the third 
derivative of refractive index with respect to the 
wavelength.  
 

2. Concept of zero material dispersion  
   wavelengths 
 
Over the wavelength region of greatest interest, the 

material dispersion can best be discussed by studying the 
propagation of plane waves in homogeneous dispersive 
medium. The group velocity of a wave is defined as 
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where ( )( ) / ( )c nβ ω ω ω=  represents the propagation 
constant, and ( )n ω represents the frequency-dependent 
refractive index. In the case of a medium for which β  is 
not a linear function of ω , the medium is said to be 
dispersive. Thus, 
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where the free space wavelength λ  is related to the 
frequency through the relation ( )2 /cλ π ω= . The 
quantity ( )( ) /gN n dn dλ λ λ= −  is referred to as the 
group refractive index since / gc N  determines the group 
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velocity. Thus, the time it takes for a pulse to traverse some 
distance L  through the fibre is given by 
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which depends on the wavelength λ . With 2 /cλ π ω=  
the following relation is obtained  
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If / 0dn dλ ≠ , then the transit time for the pulse 

depends on the wavelength. Most light sources such as light 
emitting diodes (LEDs) or semiconductor lasers have a 
spectral width λ∆  that exceeds by far that of the pulse 
itself. Spectral widths λ∆  of light sources are 
comparatively large in the case of LEDs, approximately 
around 20 nm at half height, and small in the case of laser 
diodes (LDs), approximately between 1 and 2 nm at half 
height. If a source is characterized by a spectral width λ∆ , 
then each wavelength component will traverse with a 
different group velocity resulting in temporal broadening of 
the pulse. A pulse produced by a light source with spectral 
width λ∆  will thus, after travelling distance L , spread out 
over a time interval determined by: 

dtt
d

λ
λ

∆ = ∆ .                 (6) 

The derivative /dt dλ  describes pulse broadening (or 
spreading) and may be of more interest than the time delay 
t  itself. From equation (5), the pulse broadening can be 
derived as   
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The quantity 2 2 2/d n dλ λ  is a dimensionless quantity. 
Since the material dispersion is proportional to the spectral 
width λ∆  and to the length L  of the fibre traversed by 
the beam, dispersion is usually specified in units of 
picoseconds per kilometre (length of the fibre) per 
nanometre (spectral width of the source). Thus, the material 
dispersion coefficient mD of the optical fibres is given by 
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where λ  is measured in micrometers and 53 10 km/sc = ⋅ . 
The wavelength cλ  at which 2 2/ 0d n dλ = , is 

referred to as the zero material dispersion wavelength. At 
this wavelength, pulses will suffer negligible dispersion as 
they propagate through an optical fibre. Below this 
wavelength, 2 2/d n dλ  is positive while above this 
wavelength 2 2/d n dλ  is negative. The former wavelength 
region is referred to as a normal group velocity dispersion 
region, while the latter region is known as an anomalous 
group velocity dispersion region. It should be noted that the 
pulse disperses in both regions: longer-wavelength 
components of the pulse travel faster than the 
shorter-wavelength ones in the normal dispersion region 
while the opposite is true for the anomalous dispersion 
region. It appears that, when an optical fibre is operated at 
ZMD wavelength, the pulses will not suffer any dispersion 
at all. However, for operation around ZMD wavelength, 
pulse distortion would be 3 3/d n dλ . This term has a 
significant impact in determining of the dispersion around 
ZMD wavelength. If we consider two closely spaced 
wavelengths λ  and λ λ+ ∆ , then ( )t λ  and ( )t λ λ+∆  
will represent respective time delays. Then, we may write  
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The term /dt dλ  vanishes at the ZDM wavelength, 

so the pulse broadening due to material dispersion is given 
by 

22 2 3

2 3

( )( ) ( )( ) ( )
2 2

d t L d nt t t
cd d

λλ λλ λ λ
λ λ

∆∆ −
∆ = + ∆ − = = . (11) 

Thus, 

( )
3

2
32

d nt L
c d
λλ

λ
⎛ ⎞

∆ = − ∆ ⎜ ⎟
⎝ ⎠

         (12) 

or 

23
3

32
L d nt
c d

λλ
λλ

⎛ ⎞ ∆⎛ ⎞∆ = − ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

          (13) 

It should be noted that the broadening that occurs when 
a pulse propagates through an optical fibre at the 
wavelengths around ZMD wavelength, is proportional to 

2( )λ∆ and distance L . Thus, the material dispersion 
coefficient mD′  of the optical fibres around zero material 
dispersion wavelengths is given by 
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where λ  is measured in micrometers and 53 10 km/sc = ⋅ . 
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3. Results and discussion 
 
3.1. Fused silica fibres 
 
We have carried out a computer simulation for fused 

silica first. An empirical expression for the refractive index 
variation is given by [10] 
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= + + + + +

− − −
,  (15) 

where C0=1.4508554 , C1= 0.0031268− , C2= 0.0000381− , 
C3= 0.0030270 , C4= 0.0000779− , C5= 0.0000018 ,  and 
l= 0.035 . Based on Eq. (15), the second derivative of 
refractive index for fused silica with respect to the 
wavelength is shown in Fig. 1. To gain numerical 
appreciation, we see from Eq. (8) that, at 1.2753µmcλ = , 
the material dispersion for the fused silica is 0τ∆ =  (the 
value of cλ  is ZMD wavelength). 

 
Fig. 1. Variation of 2 2/d n dλ  with λ  of the fused silica. 

Fig. 2. Variation of 3 3/d n dλ  with λ  of the fused silica. 

 

Third derivative of refractive index for fused silica is 
shown in Figure 2. As mentioned already for operation 
around ZMD wavelength, the material dispersion would be 
determined by the next power term, namely by 3 3/d n dλ . 
It should be noted that the material dispersion still occurs at 
around 1.2753µmcλ =  despite 2 2/ 0d n dλ = . Figure 3 
shows the material dispersion for fused silica determined by 

3 3/d n dλ  around ZMD wavelength. To gain some 
numerical appreciation, we see from Eq. (13) that for 

1.2753µmcλ = , the material dispersion for fused silica  is 
31ps/kmτ∆ ≅ . 

 
Fig. 3. Material dispersion of the fused silica-based 

optical fibres around ZMD wavelength. 
 

We continued our analysis of the material dispersion 
with pure and doped silica-based fibres whose refractive 
indices can be represented by the following three-term 
Sellmeier’s function of wavelength: 
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where n  is the refractive index of the medium, iA  is the 
oscillator strength, iB  is the oscillator wavelength, and λ  
is the wavelength of light. Values of coefficients in 
Sellmeir’s formula for pure and doped silica are shown in 
Table 1 [11]. The corresponding variation of refractive 
index with wavelength is shown in Fig. 4. It is apparent that 
the refractive index changes with the level of change 
depending on the dopant and the % of mole.
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Table 1: The Sellmeir’s coefficients for pure and doped silica [10]. 

 
 

 
Fig. 4. Refractive index versus λ  of the pure and doped silica 

 
In Fig. 5, the variations of  2 2/d n dλ  are shown for 

pure and doped silica (the labels 1-5 correspond to various 
samples given in Table 1).  

 

 
 

Fig. 5. Variations of  2 2/d n dλ  with λ  of the pure 
and doped silica. 

 
 

As an illustration, it follows from Eq. (16) that 
1 1.2728µmcλ = , 2 1.30947µmcλ = , 3 1.38325µmcλ = , 
4 1.26453µmcλ =  and 5 1.28266µmcλ = . It is apparent 

that the doping changes the ZMD wavelengths slightly. 

 
Fig. 6. Variation of 3 3/d n dλ  with λ  of pure and doped silica. 

 
In Fig. 6, the variation of 3 3/d n dλ  are shown for 

pure and doped silica. It is apparent that around ZMD 
wavelengths the third derivative of the refraction index is 
not zero and that it contributes to the existence of material 
dispersion in optical fibres (based on both, pure and doped 
silica). In Figure 7, the calculated material dispersion is 
shown for pure and doped silica optical fibres. We conclude 
that despite 2 2/ 0d n dλ =  around ZMD wavelengths, 
material dispersion occurs nevertheless; it is approximately 
20-35 ps/km.  

 
Fig. 7. Material dispersion of the pure and doped 

silica-based optical fibres around ZMD wavelength 
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3.2 Fluoride based fibres 
 
In the last few years, fluoride-based fibres have been 

investigated in detail for operation in mid-infrared 
(2-5 µm ) wavelength region because of their predicted ultra 
low loss of 10-3 dB/km. Such fibres may find applications in 
long-wave repeaterless telecommunication links and 
intercontinental submarine links. This has motivated us to  
 
 

 
 
continue with analysis of fluoride fibres in order to 
calculate a material dispersion around ZMD wavelength. 
Various fluoride glasses for applications in infrared fibre 
optic communication are shown in Table 2. 

 
 
 
 

Table 2: Various fluoride glasses (adopted from [11]). 

 

 
For the fluoride glass, the refractive index versus 

wavelength can be represented by the following Sellmeier’s 
expression [12] 

4 2 2 4( )n A B C D Eλ λ λ λ λ− −= + + + +   (17) 

where A to E are Sellmeier’s coefficients listed in Table 3.   
 

 

Table 3. Sellmeier’s coefficients for the fluoride glasses [11]. 

 
 

Average refractive indices of the fluoride glasses are 
summarized in Figure 8 for different wavelengths (the 
labels 1 to 5 denote the fluoride materials). 
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Fig. 8. Average refractive indices versus λ  of the fluoride 

glasses. 

 
The corresponding variations of the 2 2/d n dλ  and 

3 3/d n dλ  with wavelength are shown in Figures 9 and 10. 
The following values of the ZMD wavelengths were 
obtained: 1 1.48152µmcλ = , 2 1.65832µmcλ = , 

3 1.62595µmcλ = , 4 1.69593µmcλ =  and 
5 1.62595µmcλ = . It is apparent that around ZMD 

wavelengths the third derivatives of index refraction are 
different from zero (Figure 10), which should be taken into 
account when calculating the material dispersion. 

 

 
Fig. 9. Variation of 2 2/d n dλ  with λ  of the fluoride glasses. 

 
 

 
 

Fig. 10. Variation of 3 3/d n dλ  with λ  of the fluoride glasses. 
 

In Fig. 11, the material delay distortion of pulse in the 
fluoride-based optical fibres was obtained from Eq. (13). 
The material dispersion is approximately 10-25 ps/km 
around the ZMD wavelengths.  

 
 

 
 

Fig. 11. Material dispersion of the fluoride glasses-based 
optical fibres around ZMD wavelength 

 
 

4. Conclusion 
 
Details of material dispersion are investigated in the 

context of pulse distortion in multimode glass optical 
fibres. Significance of the 3 3/d n dλ  term in an earlier 
reported concept is estimated. This is done for the operating 
wavelength around the so-called zero material dispersion 
wavelength when 2 2/ 0d n dλ = . The strong material 
dispersion persisting under this condition (a pulse of light 
centred on this zero material dispersion wavelength also 
suffers significant dispersion) attests to strong influence of 
the next higher-order term, 3 3/d n dλ . 
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