"

Cookies ussage consent

Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our site without changing the browser settings you grant us permission to store that information on your device.

I agree, do not show this message again.

Microstructural evolution and mechanical properties of AlMg/AlN composite materials obtained "in-situ"

R. M. FLOREA1,* , I. PETER2, M. ROSSO2, D. MITRICA3, I. CARCEA1

Affiliation

  1. ”Gheorghe Asachi” Technical University of Iasi, Prof Dr. D-tru Mangeron Street, Iasi, Romania, Postal code: 700050
  2. Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, Torino, Italy
  3. National Research & Development Institute for nonferrous and Rare Metals – IMNR 102 Biruinţei B-lvd, Pantelimon, Ilfov, Romania, Postal code: 077145

Abstract

In this paper characteristics of an AlMg/AlN composite produced “in-situ” and processed in a flowing N2 atmosphere is investigated. Some critical parameters such as the manufacturing process temperature, the percentage of the magnesium consumed, the flowing reactive gas flow and the time for completing the manufacturing are considered as variables for the parametric investigation. Moreover, the effect of different amount of Mg employed has been also investigated, since Mg acts as a catalyst at the surface both for the gas/liquid and solid/liquid systems. Traditional methods were used for the basic characterization of the composite. The microstructure of the composite was investigated by optical and scanning electron microscopy (OM, SEM). SEM analysis was performed in order to observe the microstructural evolution as a function of the Mg content and to identify some reasons of the presence of porosity or any irregularities within the metal matrix. The evolution of mechanical properties, in terms of microhardness, at different percentage of Mg were monitored. By EDS technique the distribution of the elements was obtained. Furthermore, employing an optimization process, uniform dispersion of the strengthening (AlN) particles in the metal matrix with homogeneous properties along the composite material is obtained. Based on the aforementioned statements, it can be concluded that the reactions between Al, Mg and the N2 atmosphere induce spontaneous infiltration in the metal matrix. The complete mix of properties and experimentally assessed parameters can be used for industrial purpose manufacturing design and development..

Keywords

Metal matrix composite, Reactive Gas Injection (RGI), Aluminium alloys, “in-situ”, Nitrides.

Submitted at: March 25, 2013
Accepted at: July 11, 2013

Citation

R. M. FLOREA, I. PETER, M. ROSSO, D. MITRICA, I. CARCEA, Microstructural evolution and mechanical properties of AlMg/AlN composite materials obtained "in-situ", Journal of Optoelectronics and Advanced Materials Vol. 15, Iss. 7-8, pp. 833-840 (2013)